
NIWJ\(01

V'l" ~-,
v.

·V,

"'.j<-_-I --
'-I

''I

·1, r--:T--_::_:-:_::_7~ -::-::;-::=t-::--=--_==_:7_ , ,

v

-·V,

:~

,- I (e) I

b.:, \

, .. . '
___________ -"'_-.J

o >

Digital Principles
Switching Theory

THIS PAGE IS
BLANK

DIGITAL PRINCIPLES

SWITCHING
THEORY

A.K. Singh
Manish Tiwari
Arun Prakash

Department of Electronics
& Instrumentation Engineering

Northern India Engineering College
Lucknow.

Copyright © 2006, New Age International (P) Ltd., Publishers
Published by New Age International (P) Ltd., Publishers

All rights reserved.
No part of this ebook may be reproduced in any form, by photostat, microfilm,
xerography, or any other means, or incorporated into any information retrieval
system, electronic or mechanical, without the written permission of the
publisher. All inquiries should be emailed to rights@newagepublishers.com

ISBN (10) : 81-224-2306-X
ISBN (13) : 978-81-224-2306-8

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS
4835/24, Ansari Road, Daryaganj, New Delhi - 110002
Visit us at www.newagepublishers.com

Dedicated to

Our Parents

Though no one can go back and make a brand new start,

any one can start from now and make a brand new end.

THIS PAGE IS
BLANK

PREFACE

Digital Electronic is intended as a comprehensive text for the courses in digital electronic
circuits. The objective of this book is to develop in the reader the ability to analyze and design
the digital circuits. The increased uses of digital technology in objects used for day-to-day life
necessitate an in-depth knowledge of the subject for the professionals and engineers.

There are lots of references available on Switching Theory and Basic Digital Circuits,
which discuss various topics separately. But through this text our notion was to discover the
topics rather than to cover them. This comprehensive text fulfills the course requirement on
the subject of digital circuit design for B. Tech degree course in Electronics, Electronics and
Communication, Electronics and Electrical, Electronics and Instrumentation, Electronics
Instrumentation and Control, Instrumentation and Control Engineering of different technical
Universities. This text is also bound to serve as a useful reference book for various competitive
examinations.

There is no special pre-requisite before starting this book. Each chapter of the book
starts with simple facts and concepts, and traverse through the examples & figures it uncovers
the advanced topics.

The book starts from chapter 0. It is very obvious because in the world of digital
electronics the very first level is 0 and then comes the last level called 1. This is the reason
why all the chapters of this book have subsections numbered starting from 0.The book has
11 well-organized chapters and 2 appendices.

Chapter 0 is introduction and is a must for all the beginners as it introduces the concept
of digital signals and digital systems. It attempts to answer why and where the digital circuits
are used what are their advantages. Chapter 1 deals with number systems and their arithmetic.
It includes an exhaustive set of solved examples and exercise to clarify the concepts. Chapter
2 introduces the basic building blocks of digital electronics. It starts with basic postulates,
Boolean algebra and then introduces logic gates. It also deals with several types of types of
implementation using logic gates. For beginners we strongly recommend to work out this
chapter twice before proceeding further.

Chapter 3 deals with the Boolean function minimization techniques using Postulates and
Boolean Algebra, K-Map and Quine-McCluskey methods. Chapter 4 presents various
combinational logic design using the discrete logic gates and LSI & MSI circuits. This chapter
also deals with hazards and fault detection. Chapter 5 introduces the Programmable Logic

(vii)

Devices. It also deals with basics of ROM, and then moves towards PLAs, PALs, CPLDs and
FPGA.

Chapter 6 introduces the clocked (synchronous) sequential circuits. It starts with
discussions on various flip-flops their triggering and flip-flop timings. It then deals with
analysis and design of synchronous circuits and concludes with sequence detector circuits.
Chapter 7 deals with shift registers and counters. It introduces the basic idea of shift registers
and then discusses various modes and application of shift registers. It then introduces the
various types and modes of counters and concludes with applications. Chapter 8 deals with
asynchronous sequential circuits. It elaborates the analysis and design procedures with different
considerations. Chapter 9 introduces the Algorithmic State Machine. It starts with basic
concepts, design tools and concludes with design using multiplexers.

Chapter 10 introduces the fundamentals of digital integrated circuits- The Digital Logic
Families. The chapter has an indepth analysis of semiconductor switching devices and various
logic families with detailed qualitative and quantitative descriptions. Circuits are simplified
topologically and equivalent circuits are drawn separately to clarify the concepts. Chapter 11
deals with the semiconductor memory devices to be used with computer system. It also
includes memory system designs and introduces Magnetic and Optical memories also.

The text also includes two rich appendices giving information about ICs fabrication,
various digital ICs, and lists various digital ICs.

All the topics are illustrated with clear diagram and simple language is used throughout
the text to facilitate easy understanding of the concepts. The authors welcome constructive
suggestion and comments from the readers for the improvement of this book at
singh_a_k@rediffmail.com or at manishtiwari_me@rediffmail.com

A.K. SINGH
MANISH TIWARI
ARUN PRAKASH

(viii)

ACKNOWLEDGEMENT

This book is the result of the dedication and encouragement of many individuals. We are
also thankful to our Directors and all our colleagues at BBD Group of Educational Institutions.

We would like to thank our family members especially wife and daughter for their
patience and continuing support and our parents for their blessings.

We are indebted to our friend and colleague Arun Prakash, for his invaluable contribution
and involvement in the project.

We thankfully acknowledge the contributions of various authors, data manuals, journals,
reference manuals etc. from where materials have been collected to enrich the contents of
the book.

Finally, We would like to thank the people at New Age International (P) Limited,
especially Mr. L.N. Mishra, who continues support and encourages writing and who made the
book a reality. Thanks are also due to Mr. Soumya Gupta, M.D. New Age International (P)
Limited for his involvement in the project.

In last but not the least by the blessing of almighty and good fortune we get such a
supporting and cooperative people around us who in one way or other help us to complete
this project in time.

A.K. SINGH
MANISH TIWARI
ARUN PRAKASH

(ix)

THIS PAGE IS
BLANK

CONTENTS

Preface (v)

Acknowledgement (vii)

CHAPTER 0: INTRODUCTION TO DIGITAL ELECTRONICS 1

CHAPTER 1: NUMBERING SYSTEMS 12

1.0 Introduction 12

1.1 Numbering Systems 12

1.1.1 A Review of the Decimal System 12

1.1.2 Binary Numbering System 12

1.1.3 Binary Formats 14

1.2 Data Organization 15

1.2.1 Bits 15

1.2.2 Nibbles 15

1.2.3 Bytes 16

1.2.4 Words 17

1.2.5 Double Words 17

1.3 Octal Numbering System 18

1.3.1 Octal to Decimal, Decimal to Octal Conversion 19

1.3.2 Octal to Binary, Binary to Octal Conversion 19

1.4 Hexadecimal Numbering System 20

1.4.1 Hex to Decimal, Decimal to Hex Conversion 21

1.4.2 Hex to Binary, Binary to Hex Conversion 21

1.4.3 Hex to Octal, Octal to Hex Conversion 21

1.5 Range of Number Represenation 22

1.6 Binary Arithmatic 24

1.7 Negative Number & Their Arithmatic 26

1.7.1 1’s & 2’s Complement 27

1.7.2 Subtraction Using 1’s & 2’s Complement 29

1.7.3 Signed Binary Representation 31

1.7.4 Arithmatic Overflow 33

1.7.5 9’s & 10’s Complement 34

(xi)

1.7.6 r’s Complement and (r–1)’s Complement 35

1.7.7 Rules for Subtraction using r’s and (r–1)’s Complement 35

1.8 Binary Coded Decimal (BCD) & Its Arithmatic 37

1.9 Codes 40

1.9.1 Weighted Binary Codes 40

1.9.2 Non-Weighbted Codes 43

1.9.3 Error Detecting Codes 45

1.9.4 Error Correcting Codes 47

1.9.5 Hamming Code 49

1.9.6 Cyclic Codes 52

1.10 Solved Examples 54

1.11 Exercises 62

CHAPTER 2: DIGITAL DESIGN FUNDAMENTALS–BOOLEAN

ALGEBRA & LOGIC GATES 63

2.0 Introductory Concepts of Digital Design 63

2.1 Truth Table 63

2.2 Axiomatic Systems and Boolean Algebra 65

2.2.1 Huntington’s Postulate 66

2.2.2 Basic Theorems and Properties of Boolean Algebra 67

2.3 Boolean Functions 69

2.3.1 Transformation of a Boolean Functions into Logic Diagram 71

2.3.2 Complement of a Function 71

2.4 Representation of a Boolean Function 72

2.4.1 Minterm & Maxterm Realization 73

2.4.2 Standard Forms—SOP & POS 75

2.4.3 Conversion between Standard Forms 77

2.5 Digital Logic Gates 77

2.5.1 Positive & Negative Logic Designation 77

2.5.2 Gate Definition 78

2.5.3 The and Gate 79

2.5.4 The or Gate 80

2.5.5 The Inverter & Buffer 82

2.5.6 Other Gates & Their Function 84

2.5.7 Universal Gates 84

2.5.8 The Exclusive OR (Ex-OR) Gate 88

2.5.9 The Exclusive NOR (Ex-NOR) Gate 91

(xii)

2.5.10 Extension to Multiple Inputs in Logic Gates 92

2.6 NAND-NOR Implementation (Two Level) 97

2.6.1 Implementation of a Multistage (Or Multilevel) Digital Circuit
Using NAND Gates Only 97

2.6.2 Implementation of a Multistage (Or Multilevel) Digital Circuits
Using NOR Gates Only 99

2.7 Exercises 101

CHAPTER 3: BOOLEAN FUNCTION MINIMIZATION TECHNIQUES 112

3.0 Introduction 112

3.1 Minimization using Postulates & Theorems of Boolean Algebra 112

3.2 Minization using Karnaugh Map (K-Map) Method 113

3.2.1 Two and Three Variable K-Map 114

3.2.2 Boolean Expresion Minization Using K-Map 116

3.2.3 Minimization in Products of Sums Form 119

3.2.4 Four Variable K-Map 120

3.2.5 Prime and Essential Implicants 123

3.2.6 Don’t Care Map Entries 124

3.2.7 Five Varibale K-Map 125

3.2.8 Six Varibale K-Map 127

3.2.9 Multi Output Minimization 129

3.3 Minimization Using Quine-McCluskey (Tabular) Method 130

3.4 Exercises 136

CHAPTER 4: COMBINATIONAL LOGIC 141

4.0 Introduction 141

4.1 Arithmatic Circuits 143

4.1.1 Addres 143

4.1.2. Subtractors 146

4.1.3 Code Converters 149

4.1.4 Parity Generators & Checkers 153

4.2 MSI & LSI Circuits 155

4.2.1 Multiplexers 156

4.2.2 Decoders (DeMultiplexers) 159

4.2.3 Encoders 167

4.2.4 Serial & Parallel Adders 169

4.2.5 Decimal Adder 174

4.2.6 Magnitude Comparators 177

(xiii)

4.3 Hazards 179

4.3.1 Hazards in Combinational Circuits 179

4.3.2 Types of Hazards 181

4.3.3 Hazard Free Realizations 182

4.3.4 Essential Hazards 184

4.3.5 Significance of Hazards 185

4.4 Fault Detection and Location 185

4.4.1 Classical Method 185

4.4.2 The Fault Table Method 186

4.4.3 Fault Direction by Path Sensitizing 189

4.5 Exercises 192

CHAPTER 5: PROGRAMMABLE LOGIC DEVICES 196

5.0 Introduction 196
5.1 Read Only Memory (ROM) 196

5.1.1 Realizing Logical Functions with ROM 198
5.2 PLAs : Programmable Logical Arrays 199

5.2.1 Realizing Logical Functions with PLAs 201
5.3 PALs : Programmable Array Logic 202

5.3.1 Commercially Available SPLDS 204
5.3.2 Generic Array Logic 204
5.3.3 Applications of PLDs 205

5.4 Complex Programmable Logic Devices (CPLD) 206
5.4.1 Applications of CPLDs 207

5.5 FPGA : Field Programmable Gate Arrays 207
5.5.1 Applications of FPGAs 209

5.6 User-Programmable Switch Technologies 210
5.7 Exercises 211

CHAPTER 6: SYNCHRONOUS (CLOCKED) SEQUENTIAL LOGIC 213

6.0 Introduction 213

6.1 Flip Flops 214

6.1.1 RS Flip Flop 216

6.1.2 D-Flip Flop 220

6.1.3 Clocked of Flip Flop 222

6.1.4 Triggering of Flip Flops 231

6.1.5 JK & T Flip Flop 232

6.1.6 Race Around Condition & Solution 235

(xiv)

6.1.7 Operating Characteristics of Flip-Flop 236

6.1.8 Flip-Flop Applications 237

6.2 Flip-Flop Excitation Table 238

6.3 Flip Flop Conversions 239

6.4 Analysis of Clocked Sequential Circuits 241

6.5 Designing of Clocked Sequential Circuits 246

6.6 Finite State Machine 250

6.7 Solved Examples 256

6.7 Exercises 262

CHAPTER 7: SHIFT REGISTERS AND COUNTERS 265

7.0 Introduction 265

7.1 Shift Registers 265

7.2 Modes of Operation 268

7.2.1 Serial IN – Serial Out Shift Registers (SISO) 268

7.2.2 Serial IN – Parallel Out Shift Registers (SIPO) 269

7.2.3 Parallel IN – Serial Out Shift Registers (PISO) 270

7.2.4 Parallel IN – Parallel Out Shift Registers (PIPO) 270

7.2.5 Bidirectional Shift Registers 270

7.3 Applications of Shift Registers 271

7.3.1 To Produce Time Delay 271

7.3.2 To Simplify Combinational Logic 271

7.3.3 To Convert Serial Data to Parallel Data 272

7.4 Counters 272

7.4.1 Introduction 272

7.4.2 Binary Ripple Up-Counter 272

7.4.3 4-Bit Binary Ripple Up-Counter 275

7.4.4 3-Bit Binary Ripple Down Counter 277

7.4.5 Up-Down Counters 278

7.4.6 Reset and Preset Functions 279

7.4.7 Universal Synchronous counter Stage 280

7.4.8 Synchronous Counter ICs 282

7.4.9 Modulus Counters 287

7.4.10 Counter Reset Method (Asynchronous Counter) 288

7.4.11 Logic Gating Method 295

7.4.12 Design of Synchrous Counters 299

7.4.13 Lockout 305

(xv)

7.4.14 MSI Counter IC 7490 A 307

7.4.15 MSI Counter IC 7492 A 313

7.4.16 Ring Counter 316

7.4.17 Johnson Counter 318

7.4.18 Ring Counter Applications 322

7.5 Exercises 328

CHAPTER 8: ASYNCHRONOUS SEQUENTIAL LOGIC 331

8.0 Introduction 331

8.1 Difference Between Synchronous and Asynchronous 333

8.2 Modes of Operation 334

8.3 Analysis of Asynchronous Sequential Machines 335

8.3.1 Fundamental Mode Circuits 335

8.3.2 Circuits Without Latches 335

8.3.3 Transition Table 338

8.3.4 Flow Table 339

8.3.5 Circuits with Latches 340

8.3.6 Races and Cycles 345

8.3.7 Pulse-Mode Circuits 346

8.4 Asynchronous Sequential Circuit Design 349

8.4.1 Design Steps 349

8.4.2 Reduction of States 351

8.4.3 Merger Diagram 352

8.5 Essential Hazards 353

8.6 Hazard-Free Realization Using S-R Flip-Flops 354

8.7 Solved Examples 357

8.8 Exercises 361

CHAPTER 9: ALGORITHMIC STATE MACHINE 362

9.0 Introduction 362

9.1 Design of Digital System 362

9.2 The Elements and Structure of the ASM Chart 363

9.2.1 ASM Block 365

9.2.2 Register Operation 365

9.2.3 ASM Charts 366

9.2.4 MOD-5 Counter 368

9.2.5 Sequence Detector 369

(xvi)

9.3 Timing Consideration 371

9.4 Data Processing Unit 375

9.5 Control Design 376

9.5.1 Multiplexer Control 377

9.5.2 PLA Control 379

9.6 Exercises 379

CHAPTER 10: SWITCHING ELEMENTS & IMPLEMENTATION OF LOGIC
 GATES 382

10.0 Introduction 382

10.1 Fundamentals of Semiconductors and Semiconductor Switching Devicer 382

10.1.1 Semiconductors 382

10.1.2 Semiconductor Diode or PN Junction 385

10.1.3 Bipolar Junction Transistor (BJTs) 391

10.2 Characteristics of Logic Families 403

10.2.1 Classifications of Logic Families 403

10.2.2 Characteristics of Digital ICs and Familier 404

10.3 Implementation of Logic Families 407

10.3.1 Basic Diode Logic 407

10.3.2 Resistor Transistor Logic (RTL) 410

10.3.3 Direct Coupled Transistor Logic (DCTL) 415

10.3.4 Diode Transistor Logic (DTL) 415

10.3.5 High Threshold Logic (HTL) 422

10.3.6 Transistor-Transistor Logic (TTL) 423

10.3.7 Emitter Coupled Logic (ECL) 431

10.3.8 MOS Logic 438

10.3.9 Three State Logic (TSL) 444

10.4 Interfacing of Logic Gates 446

10.4.1 TTL to CMOS Interfacing 446

10.4.2 CMOS to TTL Interfacing 447

10.5 Comparison of Logic Families 448

10.8 Exercises 448

CHAPTER 11: MEMORY FUNDAMENTALS 452

11.0 Introduction 452

11.1 Memory Basics 452

11.2 Memory Characteristics 453

(xvii)

11.3 Mass Storage Devices 455

11.3.1 Magnatic Memory 455

11.3.2 Opical Memory 457

11.4 Semiconductor Memory 458

11.4.1 Basic Memory Unit 458

11.4.2 Basic Memory Organization 459

11.4.3 Cell Organization (Memory Addressing) 460

11.4.3.1 Matrix Addressing 461

11.4.3.2 Address Decoding 461

11.4.4 Organizing Word Lengths (Different Memory Organization) 464

11.4.5 Classification of Semiconductor Memory 468

11.4.6 Semiconductor Memory Timing 469

11.4.6.1 Memory Write Operation 470

11.4.6.2 Memory Read Operation 471

11.4.7 Read Only Memory 472

11.4.7.1 Some Simple ROM Organizations 473

11.4.7.2 Mask Programmed ROMs 475

11.4.8 Progammable Read Only Memory (PROM) 476

11.4.8.1 Bi-Polar PROMS 477

11.4.8.2 MOS PROMS 478

11.4.8.3 PROM Programming 478

11.4.9 Progammable Read Only Memory (EPROM) 479

11.4.9.1 EPROM Programming 480

11.4.9.2 The 27XXX EPROM Series 480

11.4.10 Electrically Erasable Progammable Read Only Memory
(EEPROM) 481

11.4.11 Random Access Memory (RAM) 482

11.4.12 Static Random Access Memory (SRAM) 482

11.4.12.1 The Bi-Polar SRAM Cell 483

11.4.12.2 The MOS SRAM Cell 484

11.4.12.3 SRAM ICs 485

11.4.13 Dynamic Random Access Memory (DRAM) 486

11.4.13.1 Basic DRAM Cell 486

11.4.13.2 One MOS Transistor DRAM Cell 487

11.4.13.3 DRAM Organization 488

11.4.14.4 DRAM Structure 489

11.4.14 SRAMS and DRAMS 491

(xviii)

11.4.15 Memory System Design 492

11.4.15.1 Determining Address Lines and Address Range 492

11.4.15.2 Parallel and Series Connections of Memory 493

11.4.15.3 Address Space Allocation 494

11.4.15.4 Formation of Memory System 495

11.5 Exercises 505

APPENDICES 517

A: Integrated Circuits Fabrication Fundamentals

B: Digital ICs

REFERENCES 517

INDEX 518

(xix)

THIS PAGE IS
BLANK

0.1 INTRODUCTION
Engineers generally classify electronic circuits as being either analog or digital in nature.

Historically, most electronic products contained electronic circuitry. Most newly designed
electronic devices contain at least some digital circuitry. This chapter introduces you to the
world of digital electronics.

What are the clues that an electronic product contains digital circuitry? Signs that a
device contains digital circuitry include:

1. Does it have an alphanumeric (shows letters and numbers) display?

2. Does it have a memory or can it store information?

3. Can the device be programmed?

If the answer to any one of the three questions is yes, then the product probably contains
digital circuitry.

Digital circuitry is quickly becoming pervasive because of its advantages over analog
including:

1. Generally, digital circuits are easier to design using modern integrated circuits (ICs).

2. Information storage is easy to implement with digital.

3. Devices can be made programmable with digital.

4. More accuracy and precision is possible.

5. Digital circuitry is less affected by unwanted electrical interferences called noise.

The very basic digital design can be defined as the science of organizing arrays of simple
switches into what is called a discrete system that perform transformations on two-level
(binary) information in a meaningful and predictable way. Certainly this is true, but digital
design as we know it today is much more exciting than this definition protends. Digital design
has matured since 1938 when Claude Shannon systemized the earlier theoretical work of
George Boole (1854). Since then, design methods and devices have been developed, tried and
proven, leading the way into one of the most fascinating and challenging fields of study.

Keep in mind that seldom will you find a field of study as vast as that of digital design
and its related applications, yet seldom will you find a field in which you can become more
productive in as short a period of time.

In short, with a limited background in other basic sciences and a desire to create, you
can start designing digital circuits in a limited period of time.

1

0
CHAPTER

INTRODUCTION TO DIGITAL ELECTRONICS

2 Switching Theory

Digital design is contrasting yet complementary to yet another developmental science we
call ANALOG DESIGN, which over the years has produced systems such as radio, analog
computers, stereo, and all sorts of other conveniences that we classify as ANALOG or CON-
TINUOUS systems. However, it is interesting to note that it is becoming increasingly difficult
to delinate the two technologies because of the inevitable integration of the two. For example,
you can now purchase a DIGITAL STEREO POWER AMPLIFIER, capable of delivering some
250 watts per channel. Until recently linear amplifier design has been one of the strongest
bastions of the analog world, but now we have this component that incorporates the advan-
tages of two technologies, resulting in a superior product. This same sort of mix is witnessed
each day in all areas of measurement instrument design where we see digital voltmeters,
digital oscilloscopes, switching power supplies etc.

The next five sections are intended to familiarize you with some of the basics of both
sciences so that you can better appreciate the applications of both and how they relate to each
other. The rest of the text is devoted to helping you develop an in-depth understanding of
digital design. The methodology of the text is step by step learning. We proceed using a rather
poignant statement made by Rudyard Kipling as a guide to rest of our studies:

I had six honest serving men
Who taught me all they knew.
Their names were WHERE, and WHAT, and WHEN, and WHY, and HOW, and WHO.

Where are Digital Circuits Used?
Digital electronics is a fast growing field, as witnessed by the widespread use of micro-

computers. Microcomputers are designed around complex ICs called microprocessors. In addition
many IC semiconductor memories makes up the microcomputer. Microcomputers with micro-
processors, interface chips and semiconductor memories have started the PC revolution.
Small computers that used to cost tens of thousands of dollars now cost only hundreds. Digital
circuits housed in ICs are used in both large and small computers.

Other examples include:
Calculator
Peripheral devices
Robotics
Digital timepiece
Digital capacitance meter
Frequency counters
Function generator

What and When Digital?
A system can be defined mathematically as a unique transformation or operator that

maps or transforms a given input condition into a specific output.

We classify systems in one of the two ways:
(i) Analog or continuous

(ii) Digital or discrete

An analog system operates with an analog or continuous signal and a digital system
operates with a digital or discrete signal. A signal can be defined as useful information
transmitted within, to or from electronic circuits.

Introduction to Digital Electronics 3

Analog or Continuous Signal
The circuit of Fig. 1 puts out an analog signal or voltage.

+

–
V

() Analog outpu t from
a po tentiometer

a

6

5

4

3

2

1
V

O
LT

S

T IME

W iper
m oving

up

W iper
m oving
down

() Analog s igna l
wave fo rm

b

A

B

O

Fig. 1

As the wiper on the potentiometer is moved upward, the voltage, from points A to B
gradually increases. When the wiper is moved downward, the voltage gradually decreases
from 5 to 0 volts (V). The waveform diagram in (b) is a graph of the analog output. On the
left side the voltage from A to B is gradually increasing from 0 to 5 V; on the right side the
voltage is gradually decreasing from 5 to 0 V. By stopping the potentiometer wiper at any mid-
point we can get an output voltage any where between 0 to 5 V.

As analog system, then, is one that has a signal which varies continuously in step with
the input.

Continuous is defined in many sophisticated ways for a wide variety of reasons and
purposes. However, for the purpose here, ‘continuous signals or events or processes which
change from one condition to yet another condition in such a manner that no detector can
percieve any disjoint or quantized behaviour brought about by this change.’ For example the
temperature of the air around us changes from time to time, and at times it changes quite
rapidly, but never does it change so rapidly that some specialized electronic thermometer
cannot track its change.

Digital or Discrete Signal
Fig. 2(a) pictures a square wave generator. The generator produces a square waveform

that is displayed on oscilloscope. The digital signal is only at +5 V or at 0 V as diagrammed
in 2(b). The voltage at point A moves from 0 to +5 V. The voltage then stays at +5 V for a
time. At point B the voltage drops immediately from +5 V to 0 V. The voltage then stays at
0 V for a time. Only two voltages are present in a digital electronic circuit. In the waveform
diagram in Fig. 2(b). These voltages are labled HIGH and LOW. The HIGH voltage is +5 V
and the LOW voltage is 0V. Latter we shall call the HIGH voltage (+5 V) a logical 1 and the
LOW voltage (0 V) a logical 0.

Square
wave

genera to r

+5

0

B

LOW

HIG H

V
O

LT
S

() D ig ital s igna l d isplayed on scopea () D ig ital s igna l wavefo rmb
A TIME

Fig. 2

4 Switching Theory

Systems, that handle only HIGH and LOW signals are called digital systems.

Discrete signals or processes are defined as those processes that change from one con-
dition to yet another condition in a percieved disjoint or quantized manner. Two explanations
could be that:

(i) there exists no detector that can trace the quantum transitions in a continuous
fashion or, may be,

(ii) it is best described to be discontinuous for specific reasons.

What is implied here is that there are processes that are continuous in every sense of
the word; however their changes are dominated by rapid transitions from one condition to the
next. Thus, it makes more sense to define it as a discrete process. For example, consider the
signal waveforms shown in Fig. 3. In Fig. 3(a) we have a sinusoidal waveform that is defined
by the continuous mathematical expression.

V(t) = A sin 2π ft.

() S inuso ida l wave fo rma () An ideal square wave fo rmb

Time

+A

–A

R ise
time

Fa ll
time

Fig. 3

While in Fig. 3(b) we have an ideal discrete signal, called a square wave signal, that is
defined by an infinite series of sinusoidal expressions called a Fourier series. This ideal
square wave is characterized by its square corners and infinitely short rise and fall times, and
thus is classified distinctly as discrete.

Its changes from one condition (HIGH voltage level) to the other (LOW voltage level) are
dominated by a series of rapid transitions.

Thus, it is supposed that some reasonable criteria could be developed for classifying
processes and signals as continuous or discrete by determining the time it takes to move from
one condition in relation to the time spent in the new condition before the next condition
must be moved to.

0.2 CLASSIFICATION OF SIGNALS
There are several classes of signals. Here we are considering only the following classes,

which are suitable for the scope of this book:

1. Continuous time and discrete time signals.

2. Analog and digital signals.

1. Continuous Time and Discrete Time Signals
A signal that is specified for every value of time t is a continuous time signal (Fig. 4(a)

and (b) and a signal that is specified only at discrete values of t (Fig. 4(d) is a discrete time
signal. Telephone and video camera outputs are continuous time signals, whereas the monthly
sales of a corporation, and stock market daily averages are discrete time signals.

Introduction to Digital Electronics 5

2. Analog and Digital Signals
The concept of continuous time is often confused with that of analog. The two are not

the same. The same is true of the concepts of discrete and digital. A signal whose amplitude
can take on any value in continuous range is an analog signal. This means that an analog
signal amplitude can take on an infinite number of values. A digital signal, on the other hand,
is one whose amplitude can take on only a finite number of values. Signals associated with
a digital computer are digital because they take on only two values (binary signals). For a
signal to qualify as digital, the no. of values need not be restricted to two. It can be any finite
number. A digital signal whose amplitudes can take on M values is an M-ary signal of which
binary (M = 2) is a special case.

The term continuous time and discrete time qualify the nature of a signal along the time
(horizontal) axis. The terms analog and digital on the other hand qualify the nature of the
signal amplitude (vertical axis). Figures 4(a, b, c, d) shows examples of various type of signals.
It is clear that analog is not necessary continuous time and digital need not be discrete time.
Fig. 4(c) shows an example of an analog but discrete time signal.

()a

t →

g(t)

()b

t →

g(t)

()c
t →

g(t)

()d

t →

g(t)

Fig. 4. Examples of signals

(a) analog, continuous time

(b) digital, continuous time

(c) analog, discrete time

(d) digital, discrete time.

6 Switching Theory

Why Use Digital Circuits ?
There are several advantages that digital (two-valued discrete) systems have over the

analog (continuous) systems. Some commonly named are:
1. Inexpensive ICs can be used with few external components.
2. Information can be stored for short periods or indefinitely.
3. Systems can be programmed and show some manner of “intelligence”.
4. Alphanumeric information can be viewed using a variety of electronic displays.
5. Digital circuits are less affected by unwanted electrical interference called ‘noise’.

Both digital and analog approaches have pitfalls. However, the pitfalls of digital are at
times easier to identify and resolve than the associated pitfalls in the analog world. This
advantage as well as those mentioned above, answer much of the question, “why digital?”

How Digital
The rest of the text is devoted to the fifth of the Kipling’s honest men–How digital.

However at this introductory stage, we are giving some idea that how do you generate a
digital signal.

Digital signals are composed of two well defined voltage levels. Most of the voltage level
used in this class will be about +3 V to +5 V for HIGH and near 0 V (GND) for LOW.

A digital signal could be made manually by using a mechanical switch. Consider the
simple circuit shown in Fig. 5.

+5V
0V (G ND)

5V
+

–

t1 t2 t3 t4

Fig. 5

As the switch is moved up and down, it produces the digital waveform shown at right.
At time period t1, the voltage is 0V, or LOW. At t2 the voltage is +5V, or HIGH. At t3, the
voltage is again 0 V, or LOW, and at t4, it is again +5 V, or HIGH. The action of the switch
causing the LOW, HIGH, LOW, HIGH waveform is called toggling. By definition, to toggle
means to switch over to an opposite state. As an example, in figure, if the switch moves from
LOW to HIGH we say the output has toggled. Again if the switch moves from HIGH to LOW
we say the output has again toggled.

Digital and the Real World
The use of digital practices can be a viable method for solving design problems in the

real world. The reason that design problems are emphasized stems from the fact that the
major areas of involvement for electrical and digital engineers are:

1. Measurement
2. Control and,
3. Transmission of information and energy.
Thus, if we look at the “what we do”, we find that we are continually trying to find

solutions to problems related to the measurement, control, and transmission of information

Introduction to Digital Electronics 7

or energy in the domain of the real world. However, the real world tends to have a continuous
nature. Because of this, the discrete domain needs to be buffered in some way.

As a result of this buffering requirement, we should view the digital domain in the
perspective shown in Fig. 6.

In te rdomain

The Dom ain of
the D ig ita l S ystem

Convers ion

The Dom ain of
the “rea l w orld”
(fo r the m ost
part analog)

Fig. 6

However, figure does not completely describe the relation between the two domains
because there are several important processes in the real world that are at least modelled
as discrete processes. For example the electrical signals governing the human nervous sys-
tem which is, most definitely discrete phenomena. But for the most part, figure does depict
the typical relation between the outside world and the digital domain.

The interdomain converter depicted in figure is a specialized system that converts or
translates information of one domain into information of another domain. For example, you
will serve as a special interdomain converter shortly when you are asked to convert a decimal
number into its binary equivalent. This operation we define as an ANALOG-TO-DIGITAL
CONVERSION.

The pure digital systems are made up of arrays of simple and reliable switches with only
two positions, that are either open or closed. (These switches can exist as either mechanical,
electromechanical, or electronic devices.)

A numerical system that already existed was adopted to serve as the “tool” needed for
utilizing the basic concept. This numerical math system, called the binary system, is based
on the two symbols “0” and “1” in contrast to the decimal system which has ten symbols:
0, 1, 2, , 9.

We should now see that in order to use a digital system, such as a digital computer for
mathematical computations, we must first convert our mathematical symbolisms (decimal in
this case) into binary symbolisms to allow the computer to perform the mathematical opera-
tion. Once this is done, the inverse process must be performed to convert the binary result
into a readable decimal representation.

The obvious question: “Is digital worth all of the conversion? The answer can not be
simply stated in Yes/No terms, but must be left to the individual and the particular situation.
In certain instances, it may not infact be worth the bother. Such would be the case if we were
able to create and use multiple valued logic systems to create a “totally decimal machine”.
Obviously if there were ten unique discriptors usable for our “decimal computer”, there would
be no need to convert any information into the now required two valued binary system.
However, practically speaking, binary systems presently dominate and will continue to be the
dominant system for some years to come.

8 Switching Theory

Since, such is the case, and man must learn how to communicate with his machine, it
is necessary that we study the processes involved in number conversion and the different
codes used to represent and convey information.

Binary Logic
Binary logic deals with variables that take on two discrete values and with operations

that assume logical meaning. The two values the variables take may be called by different
names (e.g., true and false, high and low, asserted and not asserted, yes and no etc.), but for
our purpose it is convenient to think in terms of numerical values and using the values of
1 and 0. The variables are designated by letters of the alphabet such as A, B, C, x, y, z, etc.,
with each variable having two and only two distinct possible values: 1 and 0. There are three
basic logical operations: AND, OR and NOT.

1. AND: This operation is represented by a dot or by the absence of an operator. For
example x.y = z or xy = z is read “x AND y is equal to z”. The logical
operation AND mean that z = 1 if and only if x = 1 if and y = 1; otherwise
z = 0.

2. OR: This operation is represented by a plus sign. For example x + y = z is read
“x OR y is equal to z” meaning that z = 1, x = 1. or if y = 1 or if both
x = 1 and y = 1. If both x = 0, and y = 0, then z = 0.

3. NOT: This operation is represented by a prime (sometimes by a bar). For example
x' = z (or x z=) is read “x not is equal to z” meaning that z is what x is not.
In other words, if x = 1, then z = 0; but if x = 0, then z = 1.

Binary logic should not confused with binary arithmetic. (Binary arithmatic will be
discussed in Chapter 2). One should realize that an arithmetic variable designates a number
that may consist of many digits. A logic variable is always either a 1 or 0. For example, in
binary arithmetic we have 1 + 1 = 10 (read: “one plus one is equal to 2”), while in binary logic,
we have 1 + 1 = 1 (read: “one OR one is equal to one”).

For each combination of the values of x and y, there is a value of z specified by the
definition of the logical operation. These definitions may be listed in a compact from using
‘truth tables’. A truth table is a table of all possible combinations of the variables showing the
relation between the values that the variables may take and the result of the operation. For
example, the truth tables for the operations AND and OR with, variables x and y are obtained
by listing all possible values that the variables may have when combined in pairs. The result
of the operation for each combination is then listed in a separate row.

Logic Gates
Logic circuits that perform the logical operations of AND, OR and NOT are shown with

their symbols in Fig. 7. These circuits, called gates, are blocks of hardware that produce a
logic 1 or logic 0. Output signal if input logic requirements are satisfied. Not that four
different names have been used for the same type of circuits. Digital circuits, switching
circuits, logic circuits, and gates. We shall refer to the circuits as AND, OR and NOT gates.
The NOT gate is sometimes called an inverter circuit since it inverts a binary signal.

x

y
z = x.y x

y
z = x + y

Two Input () AND ga te () O R ga tea b

x x′

() NO T ga te o r inverte rc

Fig. 7

Introduction to Digital Electronics 9

The input signals x and y in the two-input gates of Fig. 8 may exist is one of four possible
states: 00, 01, 10, or 11. These input signals are shown in Fig. 8 together with the output
signals for the AND and OR gates. The timing diagrams of Fig. 8 illustrate the response of
each circuit to each of the four possible input binary combinations.

0 1 1 0 0

0 0 1 1 0

0 0 1 0 0

0 1 1 1 0

1 0 0 1 1

x

y

AND : x .y

O R : x + y

NO T : x′

Fig. 8

The mathematic system of binary logic is known as Boolean, or switching algebra. This
algebra is used to describe the operation of networks of digital circuits. Boolean algebra is
used to transform circuit diagrams to algebraic expressions and vice versa. Chapter 3 is
devoted to the study a Boolean algebra where we will see that these function (AND, OR, NOT)
Make up a sufficient set to define a two valued Boolean algebra.

The truth tables for AND, OR and NOT are listed in following Table.

AND OR NOT

x y x.y x y x + y x x'

0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0

1 0 0 1 0 1

1 1 1 1 1 1

These tables clearly demonstrate the definitions of the operations.

Switching Circuits and Binary Signals
The use of binary variables and the application of binary logic are demonstrated by the

simple switching circuits of Fig. 9(a) and (b).

A B

() Sw itches in series
log ic AND

a

B

() Sw itches in Paralle l
log ic O R

b

L
A

L

Vo ltage
source

Fig. 9

Let the manual switches A and B represent two binary variables with values equal to 0
when the switch is open and 1 when switch is closed. Similarly, let the lamp L represent a

10 Switching Theory

third binary variable equal to 1 when the light is on and 0 when off. For the switches in
series, the light turns on if A and B are closed. For the switches in parallel, this light turns
on if A or B is closed.

Thus L = A.B for the circuit of Fig. 9(a)

L = A + B for the circuit of Fig. 9(b)

Electronic digital circuits are sometimes called switching circuits because they behave
like a switch, with the active element such as a transistor either conducting (switch closed)
or not conducting (switch open). Instead of changing the switch manually, an electronic
switching circuit uses binary signals to control the conduction or non-conduction state of the
active element.

0.3 INTEGRATED CIRCUITS
An integrated circuit (IC) is a small silicon semiconductor crystal, called a chip, contain-

ing electrical components such as transistors, diodes, resistors and capacitors. The various
components are interconnected inside the chip to form an electronic circuit. The chip is
mounted on a metal or plastic package, and connections are welded to external pins to form
the IC.

The individual components in the IC cannot be separated or disconnected and the circuit
inside the package is accessible only through the external pins.

Besides a substantial reduction in size, ICs offer several other advantages and benefits
compared to electronic circuits with discrete components. These are:

1. The cost of ICs is very low, which makes them economical to use.

2. Their reduced power consumption makes the digital system more economical to
operate.

3. They have a high reliability against failure, so the digital system needs less repairs.

4. The operating speed is higher, which makes them suitable for high-speed operations.

Small scale integration (SSI) refers to ICs with fewer than to gates on the same chip.

Medium scale integration (MSI) includes 12 to 100 gates per chip. Large scale integration
(LSI) refers to more than 100 upto 5000 gates per chip. Very large scale integration (VLSI)
devices contain several thousand gates per chip.

Integrated chips circuits are classified into two general categories: (i) Linear and (ii) Digital.

0.4 CLASSIFICATION OF DIGITAL CIRCUITS
Digital circuits can be broadly classified into two general categories:

1. Combination logic circuits

2. Sequential logic circuits.

1. Combination Logic Circuits
A combinational circuit consists of logic gates whose outputs at any time are determined

directly from the present combination of inputs without regard to previous inputs. A combi-
national circuit consist of input variables, logic gates and output variables. A block diagram
of combinational logic circuit is shown in Fig. 10.

Introduction to Digital Electronics 11

Combinationa l
c ircuit

Inpu t
variab les

O utpu t
variab les

Consisting
o f a ne twork of

log ic ga tes

Fig. 10

2. Sequential Logic Circuits
Many systems encountered inpractice also include memory elements which require that

the system be described in terms of sequential logic. A block diagram of sequential logic
circuit is shown in Fig. 11.

Combinationa l
logic c ircuit M em ory

e lem ents

Inpu ts
O utpu ts

Fig. 11

It consists of a combinational circuit to which memory elements are connected to form
a feedback path. The memory elements are devices capable of storing binary information
within them. Thus the external outputs in a sequential circuit are a function of not only
externals inputs but also of the present stats of memory elements. This is why, there circuits
are also known as History sensitive circuits.

There are two types of sequential circuits depending upon the timing of their input
signals of the memory elements used.

(i) Synchronous sequential circuit. If the transition of sequential circuit from one
state to another are controlled by a clock (i.e., depending upon time), the circuit is
known as synchronous. The memory elements are clocked flip flops.

(ii) Asynchronous sequential circuit. When the circuit is not controlled by clock,
(i.e., independent of time) the transition from one state to another occur whenever
there is a change in the input of circuit. The memory elements are either unclocked
FFs (latches) or time delay elements.

12 Switching Theory

1.0 INTRODUCTION
This chapter discusses several important concepts including the binary, octal and hexadeci-

mal numbering systems, binary data organization (bits, nibbles, bytes, words, and double
words), signed and unsigned numbering systems. If one is already familiar with these terms
he should at least skim this material.

1.1 NUMBERING SYSTEMS
Inside today’s computers, data is represented as 1’s and 0’s. These 1’s and 0’s might be

stored magnetically on a disk, or as a state in a transistor, core, or vacuum tube. To perform
useful operations on these 1’s and 0’s one have to organize them together into patterns that
make up codes. Modern digital systems do not represent numeric values using the decimal
system. Instead, they typically use a binary or two’s complement numbering system. To
understand the digital system arithmetic, one must understand how digital systems represent
numbers.

1.1.1 A Review of the Decimal System
People have been using the decimal (base 10) numbering system for so long that they

probably take it for granted. When one see a number like “123”, he don’t think about the
value 123; rather, he generate a mental image of how many items this value represents. In
reality, however, the number 123 represents:

1*102 + 2*101 + 3*100

OR 100 + 20 + 3
Each digit appearing to the left of the decimal point represents a value between zero and

nine times an increasing power of ten. Digits appearing to the right of the decimal point
represent a value between zero and nine times an increasing negative power of ten. For
example, the value 123.456 means:

1*102 + 2*101 + 3*100 + 4*10–1 + 5*10–2 + 6*10–3

OR 100 + 20 + 3 + 0.4 + 0.05 + 0.006
Note: Hexadecimal is often abbreviated as hex even though, technically speaking, hex means base

six, not base sixteen.

1.1.2 Binary Numbering System
Most modern digital systems operate using binary logic. The digital systems represents

values using two voltage levels (usually 0 v and +5 v). With two such levels one can represent

12

1
CHAPTER

NUMBERING SYSTEMS

Numbering Systems 13

exactly two different values. These could be any two different values, but by convention we
use the values zero and one. These two values, coincidentally, correspond to the two digits
used by the binary numbering system.

The binary numbering system works just like the decimal numbering system, with two
exceptions: binary only allows the digits 0 and 1 (rather than 0–9), and binary uses powers
of two rather than powers of ten. Therefore, it is very easy to convert a binary number to
decimal. For each “1” in the binary string, add 2n where “n” is the bit position in the binary
string (0 to n–1 for n bit binary string).

For example, the binary value 10102 represents the decimal 10 which can be obtained
through the procedure shown in the below table:

Binary No. 1 0 1 0

Bit Position (n) 3rd 2nd 1st 0th

Weight Factor (2n) 23 22 21 20

bit * 2n 1*23 0*22 1*21 0*20

Decimal Value 8 0 2 0

Decimal Number 8 + 0 + 2 + 0 = 10

All the steps in above procedure can be summarized in short as

1*23 + 0*22 + 1*21 + 0*20 = 8 + 0 + 2 + 0 = 1010
The inverse problem would be to find out the binary equivalent of given decimal number
for instance let us find out binary of 1910 (decimal 19)

 Division Dividend Remainder

19 / 2 9
 1

9 / 2 4 1

4 / 2 2 0

2 / 2 1 0

1 / 2 0 1

 1 0 0 1 1

 Dividend is 0, stop the procedure.

Our final number is 10011.

To convert decimal to binary is slightly more difficult. One must find those powers
of two which, when added together, produce the decimal result. The easiest method is to
work from the a large power of two down to 20. For example consider the decimal value
1359:

14 Switching Theory

• 210 = 1024, 211 = 2048. So 1024 is the largest power of two less than 1359. Subtract
1024 from 1359 and begin the binary value on the left with a “1” digit. Binary = “1”,
Decimal result is 1359 – 1024 = 335.

• The next lower power of two (29 = 512) is greater than the result from above, so
add a “0” to the end of the binary string. Binary = “10”, Decimal result is still 335.

• The next lower power of two is 256 (28). Subtract this from 335 and add a “1” digit
to the end of the binary number. Binary = “101”, Decimal result is 79.

• 128 (27) is greater than 79, so take a “0” to the end of the binary string. Binary =
“1010”, Decimal result remains 79.

• The next lower power of two (26 = 64) is less than 79, so subtract 64 and append
a “1” to the end of the binary string. Binary = “10101”, Decimal result is 15.

• 15 is less than the next power of two (25 = 32) so simply add a “0” to the end of
the binary string. Binary = “101010”, Decimal result is still 15.

• 16 (24) is greater than the remainder so far, so append a “0” to the end of the binary
string. Binary = “1010100”, Decimal result is 15.

• 23 (eight) is less than 15, so stick another “1” digit on the end of the binary string.
Binary = “10101001”, Decimal result is 7.

• 22 is less than seven, so subtract four from seven and append another one to the
binary string. Binary = “101010011”, decimal result is 3.

• 21 is less than three, so append a one to the end of the binary string and subtract
two from the decimal value. Binary = “1010100111”, Decimal result is now 1.

• Finally, the decimal result is one, which is 20, so add a final “1” to the end of the
binary string. The final binary result is “10101001111”.

1.1.3 Binary Formats
In the purest sense, every binary number contains an infinite number of digits (or bits

which is short for binary digits). Because any number of leading zero bits may precede the
binary number without changing its value. For example, one can represent the number
seven by:

 111 00000111 ..0000000000111 000000000000111
Note: This book adopt the convention ignoring any leading zeros. For example, 1012 represents

the number five. Since the 80 × 86 works with groups of eight bits, one will find it much easier to zero
extend all binary numbers to some multiple of four or eight bits. Therefore, following this convention,
number five is represented as 01012 or 000001012.

Often several values are packed together into the same binary number. For convenience,
a numeric value is assign to each bit position. Each bit is numbered as follows:

1. The rightmost bit in a binary number is bit position zero.

2. Each bit to the left is given the next successive bit number.

An eight-bit binary value uses bits zero through seven:

X7 X6 X5 X4 X3 X2 X1 X0

Numbering Systems 15

A 16-bit binary value uses bit positions zero through fifteen:

 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

Bit zero is usually referred to as the low order bit. The left-most bit is typically called
the high order bit. The intermediate bits are referred by their respective bit numbers. The
low order bit which is X0 is called LEAST SIGNIFICANT BIT (LSB). The high order bit or
left most bit. i.e., X15 is called MOST SIGNIFICANT BIT (MSB).

1.2 DATA ORGANIZATION
In pure mathematics a value may take an arbitrary number of bits. Digital systems, on the

other hand, generally work with some specific number of bits. Common collections are single bits,
groups of four bits (called nibbles), groups of eight bits (called bytes), groups of 16 bits (called
words), and more. The sizes are not arbitrary. There is a good reason for these particular values.

1.2.1 Bits
The smallest “unit” of data on a binary computer or digital system is a single bit. Bit,

an abbreviation for Binary Digit, can hold either a 0 or a 1. A bit is the smallest unit of
information a computer can understand. Since a single bit is capable of representing only two
different values (typically zero or one) one may get the impression that there are a very small
number of items one can represent with a single bit. That’s not true! There are an infinite
number of items one can represent with a single bit.

With a single bit, one can represent any two distinct items. Examples include zero or
one, true or false, on or off, male or female, and right or wrong. However, one are not limited
to representing binary data types (that is, those objects which have only two distinct values).
One could use a single bit to represent the numbers 321 and 1234. Or perhaps 6251 and 2.
One could also use a single bit to represent the colors green and blue. One could even
represent two unrelated objects with a single bit. For example, one could represent the color
red and the number 3256 with a single bit. One can represent any two different values with
a single bit. However, one can represent only two different values with a single bit.

To confuse things even more, different bits can represent different things. For example,
one bit might be used to represent the values zero and one, while an adjacent bit might be used
to represent the values true and false. How can one tell by looking at the bits? The answer,
of course, is that one can’t. But this illustrates the whole idea behind computer data structures:
data is what one define it to be. If one uses a bit to represent a boolean (true/false) value then
that bit (by definition) represents true or false. For the bit to have any true meaning, one must
be consistent. That is, if one is using a bit to represent true or false at one point in his program,
he shouldn’t use the true/false value stored in that bit to represent green or blue later.

Since most items one will be trying to model require more than two different values,
single bit values aren’t the most popular data type used. However, since everything else
consists of groups of bits, bits will play an important role in programs. Of course, there are
several data types that require two distinct values, so it would seem that bits are important
by themselves. However, individual bits are difficult to manipulate, so other data types are
often used to represent boolean values.

1.2.2 Nibbles
A nibble is a collection of four bits. It wouldn’t be a particularly interesting data structure

except for two items: BCD (binary coded decimal) numbers and hexadecimal numbers. It

16 Switching Theory

takes four bits to represent a single BCD or hexadecimal digit. With a nibble, one can
represent up to 16 distinct values. In the case of hexadecimal numbers, the values 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F are represented with four bits (see “The
Hexadecimal Numbering System”). BCD uses ten different digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
and requires four bits. In fact, any sixteen distinct values can be represented with a
nibble, but hexadecimal and BCD digits are the primary items we can represent with a
single nibble.

1.2.3 Bytes
Computer memory must be able to store letters, numbers, and symbols. A single bit by

itself cannot be of much use. Bits are combined to represent some meaningful data. A group
of eight bits is called a byte. It can represent a character and is the smallest addressable
datum (data item) on the most of the digital systems (e.g. 80 × 86 microprocessor). The most
important data type is the byte. Main memory and input/output addresses on the 80 × 86 are
all byte addresses. This means that the smallest item that can be individually accessed by an
80 × 86 program is an eight-bit value. To access anything smaller requires that you read the
byte containing the data and mask out the unwanted bits. The bits in a byte are normally
numbered from zero to seven using the convention in Fig. 1.1.

Bit 0 is the low order bit or least significant bit, bit 7 is the high order bit or most
significant bit of the byte. All other bits are referred by their number.

7 6 5 4 3 2 1 0

Fig. 1.1 Bit numbering in a byte

Note: That a byte also contains exactly two nibbles (see Fig. 1.2).

7 6 5 4 3 2 1 0

High Nibble Low Nibble

Fig. 1.2 The two nibbles in a byte

Bits 0–3 comprise the low order nibble, bits 4–7 form the high order nibble. Since a byte
contains exactly two nibbles, byte values require two hexadecimal digits.

Since a byte contains eight bits, it can represent 28, or 256, different values. Generally,
a byte is used to represent numeric values in the range 0.255, signed numbers in the range
–128.. + 127 (refer “Signed and Unsigned Numbers”). Many data types have fewer than 256
items so eight bits is usually sufficient.

For a byte addressable machine, it turns out to be more efficient to manipulate a whole
byte than an individual bit or nibble. For this reason, most programmers use a whole byte
to represent data types that require no more than 256 items, even if fewer than eight bits
would suffice. For example, we’ll often represent the boolean values true and false by 000000012
and 000000002 (respectively).

Numbering Systems 17

Probably the most important use for a byte is holding a character code. Characters typed
at the keyboard, displayed on the screen, and printed on the printer all have numeric values.

1.2.4 Words
A word is a group of 16 bits. Bits in a word are numbered starting from zero on up to

fifteen. The bit numbering appears in Fig. 1.3.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 1.3 Bit numbers in a word

Like the byte, bit 0 is the low order bit and bit 15 is the high order bit. When referencing
the other bits in a word use their bit position number.

Notice that a word contains exactly two bytes. Bits 0 through 7 form the low order byte,
bits 8 through 15 form the high order byte (see Fig. 1.4).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

High Byte Low Byte

Fig. 1.4 The two bytes in a word

Naturally, a word may be further broken down into four nibbles as shown in Fig. 1.5.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nibble 3 Nibble 2 Nibble 1 Nibble 0
Higher Nibble Lower Nibble

Fig. 1.5 Nibbles in a word

Nibble zero is the low order nibble in the word and nibble three is the high order nibble
of the word. The other two nibbles are “nibble one” or “nibble two”.

With 16 bits, 216 (65,536) different values can be represented. These could be the values
in the range 0 to 65,535 (or –32,768 to +32,767) or any other data type with no more than
65,536 values. The three major uses for words are integer values, offsets, and segment
values.

Words can represent integer values in the range 0 to 65,535 or –32,768 to 32,767.
Unsigned numeric values are represented by the binary value corresponding to the bits in the
word. Signed numeric values use the two’s complement form for numeric values (refer
“Signed and Unsigned Numbers”). Segment values, which are always 16 bits long, constitute
the paragraph address of a code, data, extra, or stack segment in memory.

1.2.5 Double Words
A double word is exactly what its name implies, a pair of words. Therefore, a double word

quantity is 32 bits long as shown in Fig. 1.6.

18 Switching Theory

31 23 15 7 0

Fig. 1.6 Bit numbers in a double word

This double word can be divided into a high order word and a low order word, or four
different bytes, or eight different nibbles (see Fig. 1.7).

Double words can represent all kinds of different things. First and foremost on the list
is a segmented address. Another common item represented with a double word is a 32-bit
integer value (which allows unsigned numbers in the range 0 to 4,294,967,295 or signed
numbers in the range –2,147,483,648 to 2,147,483,647). 32-bit floating point values also fit into
a double word. Most of the time, double words are used to hold segmented addresses.

Fig. 1.7 Nibbles, bytes, and words in a double word

1.3 OCTAL NUMBERING SYSTEM
The octal number system uses base 8 instead of base 10 or base 2. This is sometimes

convenient since many computer operations are based on bytes (8 bits). In octal, we have 8
digits at our disposal, 0–7.

Decimal Octal

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 10

31 23 15 7 0

31 23 15 7 0

High World Word

31 23 15 7 0

Higher Byte Byte 2 Byte 1 Lower Byte

Nibble 7 6 5 4 3 2 1 0
Hihger Lower

Numbering Systems 19

Decimal Octal

9 11
10 12
11 13
12 14
13 15
14 16
15 17
16 20

1.3.1 Octal to Decimal, Decimal to Octal Conversion
Converting octal to decimal is just like converting binary to decimal, except instead of

powers of 2, we use powers of 8. That is, the LSB is 80, the next is 81, then 82, etc.

To convert 172 in octal to decimal:

1 7 2

82 81 80

Weight = 1*82 + 7*81 + 2*80

= 1*64 + 7*8 + 2*1

= 12210

Converting decimal to octal is just like converting decimal to binary, except instead of
dividing by 2, we divide by 8. To convert 122 to octal:

122/8 = 15 remainder 2

15/8 = 1 remainder 7

1/8 = 0 remainder 1

= 1728

If using a calculator to perform the divisions, the result will include a decimal fraction
instead of a remainder. The remainder can be obtained by multiplying the decimal fraction
by 8. For example, 122/8 = 15.25. Then multiply 0.25 * 8 to get a remainder of 2.

1.3.2 Octal to Binary, Binary to Octal Conversion
Octal becomes very useful in converting to binary, because it is quite simple. The

conversion can be done by looking at 3 bit combinations, and then concatenating them
together. Here is the equivalent for each individual octal digit and binary representation:

Octal Binary
1 001
2 010
3 011
4 100
5 101
6 110
7 111

20 Switching Theory

To convert back and forth between octal and binary, simply substitute the proper pattern
for each octal digit with the corresponding three binary digits.

For example, 372 in octal becomes 010 111 010 or 010111010 in binary.

777 in octal becomes 111 111 111 or 111111111 in binary.

The same applies in the other direction:

100111010 in binary becomes 100 111 010 or 472 in octal.

Since it is so easy to convert back and forth between octal and binary, octal is sometimes
used to represent binary codes. Octal is most useful if the binary code happens to be a
multiple of 3 bits long. Sometimes it is quicker to convert decimal to binary by first convert-
ing decimal to octal, and then octal to binary.

1.4 HEXADECIMAL NUMBERING SYSTEM
The hexadecimal numbering system is the most common system seen today in repre-

senting raw computer data. This is because it is very convenient to represent groups of 4 bits.
Consequently, one byte (8 bits) can be represented by two groups of four bits easily in
hexadecimal.

Hexadecimal uses a base 16 numbering system. This means that we have 16 symbols to
use for digits. Consequently, we must invent new digits beyond 9. The digits used in hex are
the letters A, B, C, D, E, and F. If we start counting, we get the table below:

Decimal Hexadecimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

16 10 10000

17 11 10001

 18 …

Numbering Systems 21

1.4.1 Hex to Decimal and Decimal to Hex Conversion
Converting hex to decimal is just like converting binary to decimal, except instead of

powers of 2, we use powers of 16. That is, the LSB is 160, the next is 161, then 162, etc.

To convert 15E in hex to decimal:

1 5 E

162 161 160

Weight = 1*162 + 5*161 + 14*160

= 1*256 + 5*16 + 14*1

= 35010

Converting decimal to hex is just like converting decimal to binary, except instead of
dividing by 2, we divide by 16. To convert 350 to hex:

350/16 = 21 remainder 14 = E

21/16 = 1 remainder 5

1/16 = 0 remainder 1

So we get 15E for 350.

Again, note that if a calculator is being used, you may multiple the fraction remainder by
16 to produce the remainder. 350/16 = 21.875. Then to get the remainder, 0.875 * 16 = 14.

1.4.2 Hex to Binary and Binary to Hex Conversion
Going from hex to binary is similar to the process of converting from octal to binary. One

must simply look up or compute the binary pattern of 4 bits for each hex code, and concatenate
the codes together.

To convert AE to binary:

A = 1010

E = 1110

So AE in binary is 1010 1110

The same process applies in reverse by grouping together 4 bits at a time and then look
up the hex digit for each group.

Binary 11000100101 broken up into groups of 4:

0110 0010 0101 (note the 0 added as padding on the MSB to get up to 4 bits)

6 2 5

= 62516

1.4.3 Hex to Octal and Octal to Hex Conversion

These conversions are done through the binary conversion. Recall that, a group of 4-bits
represent a hexadecimal digit and a group of 3-bits represent an octal digit.

Hex to Octal Conversion

1. Convert the given hexadecimal number into binary.

2. Starting from right make groups of 3-bits and designate each group an octal digit.

22 Switching Theory

Example. Convert (1A3)16 into octal.

Solution.

1. Converting hex to binary

(1 A 3)16 = 0001
1

1010
A

0011
3

2. Grouping of 3-bits

(1A3)16 = 000 110 100

0 6 4

011

3

so (1A3)16 = (0643)8 ≡ (643)8

Octal to Hex Conversion

1. Convert the given octal number into binary.

2. Starting from right make groups of 4-bits and designate each group as a Hexadeci-
mal digit.

Example. Convert (76)8 into hexadecimal.

Solution. 1. Converting octal to binary

(76)8 = 111 110
7 6

2. Grouping of 4-bits

(76)8 = 11 1110 0011

3 E 3

1110

E

so (76)8 = (3E)16

1.5 RANGE OF NUMBER REPRESENTATION

The range of numbers that can be represented is determined by the number of digits (or
bits in binary) used to represent a number. Let us consider decimal number system to
understand the idea.

Highest decimal number represented by 2 digits = 99

But 99 = 100 – 1 = 102 – 1. The power of 10 (in 102 – 1)
indicates that it is 2 digit representation.

So highest 2-digit decimal number = 102 – 1

and lowest 2-digit decimal number = 00

Thus range of 2-digit decimal number = 00 to 102 – 1

It is evident that a total of 100 or 102 numbers (00 to 99) can be represented by 2-digits.

So we conclude that for n-digit representation

range of decimal numbers = 0 to 10n – 1

Numbering Systems 23

highest decimal number = 10n – 1

total numbers that can be represented = 10n

Note that highest n-digit decimal number can be represented by n 9s (i.e., 10 – 1) e.g.,
highest 2 digit decimal number is represented by 2 9s which is 99.

The above discussion can be generalized by taking base-r number system instead of base-
10 (or decimal) number system. Thus with n-digit representation–

Total distinct numbers that can be represented = rn

Highest decimal Number = rn – 1

Range of Numbers = 0 to rn – 1

where r = base or radix of Number system

n = Number of digits used for representation

It is worth noting that highest decimal number can be represented by n (r – 1)s in base-
r system.

Let us consider the base-2 or binary number system. Thus 2n distinct quantities, in the
range 0 to 2n – 1, can be represented with n-bit. If n = 4-bits, total distinct quantities (i.e.,
numbers) that can be represented

= N = 24 = 16

the range of numbers = 0 to 24 – 1 = 0 to 15

and Highest decimal number = 24 – 1 = 15

The highest decimal number 15, is represented by our 1s i.e., 1111. The range 0 to 15
corresponds to 0000 to 1111 in binary.

If we want to represent a decimal number M using n-bits, then the number M should
lie in the range 0 to 2n–1 i.e.,

0 < M < 2n – 1

or 2n – 1 > M

or 2n > M + 1

or n > log2 (M + 1)

where M and n are integers.

In the similar way if we want to represent N distinct quantities in binary then N should
not exceed 2n.

2n > N
or n > log2N Both n and N are integer

Example. How many bits are required to represent

(i) 16-distinct levels

(ii) 10 distinct levels

(iii) 32 distinct levels

Solution. (i) we have 2n > N

or 2n > 16 ⇒ 2n > 24

or n > 4 ⇒ n = 4

24 Switching Theory

Thus, atleast 4-bits are required to represent 16 distinct levels, ranging from 0 to 15.

(ii) We have n > log2 N

or n > log210 ⇒ n > 3.32

but n should be integer, so take next higher integer value

i.e., n = 4 bits

So, minimum 4-bits are required to represent 10 distinct levels, ranging from 0 to 9.

(iii) n > log2 N

or n > log232 ⇒ n > log2 25

or n > 5 ⇒ n = 5

So, minimum 5-bits are required to represent 32 levels, ranging from 0 to 31.

Example. Calculate the minimum no. of bits required to represent decimal numbers

(i) 16 (ii) 63

Solution. (i) We have n > log2(M + 1) where M = given number

so n > log2(16 + 1) ⇒ n > log2(17)

or n > 4.09

taking next higher integer i.e., n = 5 bits.

Thus, atleast 5-bits are required to represent decimal number 16.

(ii) n > log2 (M + 1)

n > log2 (63 + 1) ⇒ n > log264

or n > log226 or n > 6 bits

So, minimum 6-bits are needed to represent decimal 63.

Example. In a base-5 number system, 3 digit representation is used. Find out

(i) Number of distinct quantities that can be represented.

(ii) Representation of highest decimal number in base-5.

Solution. Given radix of number system r = 5

digits of representation n = 3

digits in base-5 would be – 0, 1, 2, 3, 4

(i) we have relation

no of distinct quantities = rn

= 53 = 125

So, 125 distinct levels (quantities) can be represented.

(ii) Highest decimal Number can be represented by n(r – 1)s i.e., by three 4s.

So, highest decimal Number = 444

1.6 BINARY ARITHMETIC

The binary arithmetic operations such as addition, subtraction, multiplication and divi-
sion are similar to the decimal number system. Binary arithmetics are simpler than decimal
because they involve only two digits (bits) 1 and 0.

Numbering Systems 25

Binary Addition

Rules for binary addition are summarized in the table shown in Fig. 1.8.

Augend Addend Sum Carry Result

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 0 1 10

Fig. 1.8 Rules for binary addition

As shown in 4th row adding 1 to 1 gives 9 carry which, is given to next binary position,
similar to decimal system. This is explained in examples below:

Example. (i) Add 1010 and 0011 (ii) Add 0101 and 1111

Solution.

Binary Subtraction

The rules for binary subtraction is summarized in the table shown in Fig. 1.9.

Minuend Subtrahend Difference Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

Fig. 1.9 Rules for binary subtraction

The process of subtraction is very similar to decimal system in which if a borrow is
needed it is taken from next higher binary position, as shown in row 2.

Example. Subtract 0100 from 1011

Solution. 1 Borrow
Minuend
Subtrahend

0 1 1 1 Difference

C C3 2 C1 C0

←
←

− ←
←

1 0 1 1
0 1 0 0

↑ ↑ ↑ ↑

There is no problem in column C0 and C1. In column C2 we made 0 –1, so result = 1 and
borrow = 1. Then this borrow = 1 is marked in column C3. So result in column C2 is 1. Then
in column C3 we first made 1 – 0 to get result = 1 and then we subtracted borrow from result,
thus we get 0 in column C3.

26 Switching Theory

“Thus in subtraction, first subtract the subtrahend bit from minuend and then subtract
borrow from the result.”

Watch out the next example to further clarify the concept.

Example. Subtract 0110 from 1001

Solution. 1 Borrow
Minuend
Subtrahend

0 0 1 1 Difference

C C3 2 C1 C0

←
←

− ←
←

1 0 0 1
0 1 1 0

↑ ↑ ↑ ↑

1

Here, in column C1 we get difference = 1 and borrow = 1. This borrow is marked in
column C2, and difference = 1 is shown in the column C1. We now come to column C2. Here
by 0–1 we get difference = 1 and borrow = 1. Now this borrow is marked in column C3. But
in column C2 already we have 9 borrow so this borrow = 1 is subtracted from difference
= 1 which results in 0. Thus the difference = 0 is marked in column C2.

In the similar way we process column C3 and we get difference = 0 in column C3.

Binary Multiplication

Binary multiplication is also similar to decimal multiplication. In binary multiplication if
multiplier bit is 0 then partial product is all 0 and if multiplier bit is 1 then partial product
is 1. The same is illustrated in example below:

Example.

Binary Division

Binary division is also similar to decimal division as illustrated in example below:

Example.

1 0 1 1 0 1
1 0 0 1
× × 1 0 0 1

1 0 0 1
× × × ×

1 0 0 1Divisor Dividend
1 0 1

1.7 NEGATIVE NUMBERS AND THEIR ARITHMETIC

So far we have discussed straight forward number representation which are nothing but
positive number. The negative numbers have got two representation

Numbering Systems 27

(i) complement representation.

(ii) sign magnitude representation.

We will discuss both the representation in following subsections.

1.7.1 1’s and 2’s Complement

These are the complements used for binary numbers. Their representation are very
important as digital systems work on binary numbers only.

1’s Complement
1’s complement of a binary number is obtained simply by replacing each 1 by 0 and each 0

by 1. Alternately, 1’s complement of a binary can be obtained by subtracting each bit from 1.

Example. Find 1’s complement of (i) 011001 (ii) 00100111

Solution. (i) Replace each 1 by 0 and each 0 by 1

0 1 1 0 0 1

↓ ↓ ↓ ↓ ↓ ↓
1 0 0 1 1 0

So, 1’s complement of 011001 is 100110.

(ii) Subtract each binary bit from 1.

1 1 1 1 1 1 1 1

– 0 0 1 0 0 1 1 1

1 1 0 1 1 0 0 0 ← 1’s complement

one can see that both the method gives same result.

2’s Complement

2’s complement of a binary number can be obtained by adding 1 to its 1’s complement.

Example. Find 2’s complement of (i) 011001 (ii) 0101100

Solution. (i) 0 1 1 0 0 1 ← Number

1 0 0 1 1 0 ← 1’s complement

+ 1 ← Add 1 to 1’s complement

1 0 0 1 1 1 ← 2’s complement

(ii) 0 1 0 1 1 0 0 ← Number

1 0 1 0 0 1 1 ← 1’s complement

+ 1 ← Add 1 to 1’s complement

1 0 1 0 1 0 0 ← 2’s complement

There is an efficient method to find 2’s complement based upon the observation made on the
above 2 examples. Consider the number and its 2’s complement of example (ii) as shown below:

0 1 0 1 1 0 0
1 0 1 0 1 0 0

1’s
complement

Same as
number

Number
2’s Complement

Fig. 1.10 Number and its 2’s complement

28 Switching Theory

The above figure clearly shows that to find 2’s complement of a binary number start from
right towards left till the first 1 appears in the number. Take these bits (including first 1) as
it is and take 1’s complement of rest of the bits. Workout below examples to enhance your
understanding.

Example. Find 2’s complement of (i) 101100 (ii) 10010 (iii) 01001

Solution. (i) Number = 101100

1 0 1 1 0 0

0 1 0 1 0 0

1’s complement

NUMBER

2’s complement

First 1 from right

(ii) Number = 10010

1 0 0 1 0

0 1 1 1 0

1’s complement

NUMBER

2’s complement

First 1 from right

(iii) Number = 01001

0 1 0 0 1

1 0 1 1 1

Take 1’s
complement

NUMBER

2’s complement

First 1 from right

As it is

It is interesting to note that taking complement twice leaves the number as it is. This
is illustrated in below Fig. 1.11.

1001 2’s
complement

0111 2’s
complement 1001

Fig. 1.11 Effect of taking complement twice

To represent a negative number using complements the process involves two steps.

(1) obtain the binary representation of equivalent positive number for given negative
number. e.g., if given number is –2 then obtain binary representation of +2.

(2) Take the appropriate complement of representation obtained in step 1.

Example. Obtain 1’s and 2’s complement representation of –5 and –7.

Solution. (i) –5

1. binary of +5 = (0101)2
2. 1’s complement of (0101)2 = (1010)2 ← Represents (–5)10

Numbering Systems 29

2’s complement of (0101)2 = (1011)2 ← Represents (–5)10

(ii) –7

1. binary of +7 = (0111)2
2. 1’s complement of (0111)2 = (1000)2 Represents (–7)10

2’s complement of (0111)2 = (1001)2 Represents (–7)10

Note that in above two examples, for positive numbers we obtained such a binary
representation in which MSB is 0. e.g., for +7 we obtained (0111)2 not just (111)2. It is because
for all positive numbers MSB must be 0 and for negative numbers MSB should be 1. This will
be more clear in subsection 1.7.3.

1.7.2 Subtraction Using 1’s and 2’s Complement

Before using any complement method for subtraction equate the length of both minuend
and subtrahend by introducing leading zeros.

1’s complement subtraction following are the rules for subtraction using 1’s complement.

1. Take 1’s complement of subtrahend.

2. Add 1’s complement of subtrahend to minuend.

3. If a carry is produced by addition then add this carry to the LSB of result. This is
called as end around carry (EAC).

4. If carry is generated from MSB in step 2 then result is positive. If no carry
generated result is negative, and is in 1’s complement form.

Example. Perform following subtraction using 1’s complement.

(i) 7 – 3 (ii) 3 – 7

Solution. (i) 7 – 3: binary of 7 = (0111)2
binary of 3 = (0011)2

both numbers have equal length.

Step 1. 1’s complement of (0011)2 = (1100)2

Step 2. Perform addition of minuend and 1’s complement of subtrahend

Step 3. EAC

0 1 1 1

+ 1 1 0 0

1 0 0 1 1

+ 1

0 1 0 0

Final
Carry

(7)
(–3 or 1’s complement of + 3)

(EAC)

Step 4. Since carry is generated in step 2 the result is positive.

since (0100)2 = (4)10

so result = +4 which is correct answer

(ii) 3 – 7:

binary of 3 = 0011

binary of 7 = 0111

30 Switching Theory

Step 1. 1’s complement of 0111 = 1000

Step 2. Perform addition of minuend and 1’s complement of subtrahend

Step 3. No carry produced so no EAC operation.

Step 4. Since no carry produced in step 2, result is negative and is in complemented
form. So we must take 1’s complement of result to find correct magnitude of result.

1’s complement of result (1011)2 = (0100)2

so final result = –(0100)2 or –(4)10

Note that when (in example (ii) the result was negative (step 2), MSB of the result was
1. When (in example (i)) the result was positive the MSB was 0. The same can be observed
in 2’s complement subtraction.

2’s complement Subtraction Method of 2’s complement is similar to 1’s complement
subtraction except the end around carry (EAC). The rules are listed below:

1. Take 2’s complement of subtrahend.

2. Add 2’s complement of subtrahend to minuend.

3. If a carry is produced, then discard the carry and the result is positive. If no carry
is produced result is negative and is in 2’s compliment form.

Example. Perform following subtraction using 2’s complement.

(i) 7 – 5 (ii) 5 – 7

Solution. (i) 7 – 5: binary of 7 = (0111)2
binary of 5 = (0101)2

Step 1. 2’s complement of subtrahend (=0101)2 = (1011)2

Step 2. Perform addition of minuend and 2’s complement of subtrahend

Step 3. Since a final carry is produced in step 2 (which is discarded) the result is positive.
So,

result = (0010)2 = (2)10

(ii) 5 – 7:

binary of 5 = (0101)2
binary of 7 = (0111)2

Step 1. 2’s complement of subtrahend (= 0111) = 1001

Step 2. Addition of minuend and 2’s complement of subtrahend

O
QP
both the numbers should

have equal length.

Numbering Systems 31

Step 3. Since final carry is not generated in step 2, the result is negative and is in 2’s
complement form. So we must take 2’s complement of result obtained in step 2 to find correct
magnitude of result.

2’s complement of result (1110)2 = (0010)2

so, final result = – (0010)2 = – (2)10

1.7.3 Signed Binary Representation

Untill now we have discussed representation of unsigned (or positive) numbers, except
one or two places. In computer systems sign (+ve or –ve) of a number should also be
represented by binary bits.

The accepted convention is to use 1 for negative sign and 0 for positive sign. In signed
representation MSB of the given binary string represents the sign of the number, in all types
of representation. We have two types of signed representation:

1. Signed Magnitude Representation

2. Signed Complement Representation

In a signed-Magnitude representation, the MSB represent the sign and rest of the bits
represent the magnitude. e.g.,

Note that positive number is represented similar to unsigned number. From the example
it is also evident that out of 4-bits, only 3-bits are used to represent the magnitude. Thus in
general, n – 1 bits are used to denote the magnitude. So the range of signed representation
becomes –(2n–1 – 1) to (2n–1 – 1).

In a signed-complement representation the positive numbers are represented in true
binary form with MSB as 0. Where as the negative numbers are represented by taking
appropriate complement of equivalent positive number, including the sign bit. Both 1’s and
2’s complements can be used for this purpose e.g.,

+5 = (0101)2

–5 = (1010)2 ←in 1’s complement

= (1011)2 ←in 2’s complement

Note that in signed complement representation the fact remains same that n – 1 bits are
used for magnitude. The range of numbers

In 1’s complement 0 to (2n–1 – 1) Positive Numbers

– 0 to –(2n–1 – 1) Negative Numbers

In 2’s complement 0 to (2n–1 – 1) Positive Numbers

– 1 to –2n–1 Negative Numbers

32 Switching Theory

To illustrate the effect of these 3 representations, we consider 4-bit binary representation
and draw the below table. Carefully observe the differences in three methods.

Decimal Signed 1’s complement 2’s complement
Magnitude

+0 0 0 0 0 0 0 0 0 0 0 0 0

+1 0 0 0 1 0 0 0 1 0 0 0 1

+2 0 0 1 0 0 0 1 0 0 0 1 0

+3 0 0 1 1 0 0 1 1 0 0 1 1

+4 0 1 0 0 0 1 0 0 0 1 0 0

+5 0 1 0 1 0 1 0 1 0 1 0 1

+6 0 1 1 0 0 1 1 0 0 1 1 0

+7 0 1 1 1 0 1 1 1 0 1 1 1

–8 — — 1 0 0 0

–7 1 1 1 1 1 0 0 0 1 0 0 1

–6 1 1 1 0 1 0 0 1 1 0 1 0

–5 1 1 0 1 1 0 1 0 1 0 1 1

–4 1 1 0 0 1 0 1 1 1 1 0 0

–3 1 0 1 1 1 1 0 0 1 1 0 1

–2 1 0 1 0 1 1 0 1 1 1 1 0

–1 1 0 0 1 1 1 1 0 1 1 1 1

–0 1 0 0 0 1 1 1 1 —

Fig. 1.12 Different signed representation

From the table it is evident that both signed Magnitude and 1’s complement methods
introduce two zeros +0 and – 0 which is awkward. This is not the case with 2’s complement.
This is one among the reasons that why all the modern digital systems use 2’s complement
method for the purpose of signed representation. From the above table it is also evident that

in signed representation
2
2

n
 positive numbers and

2
2

n
 negative numbers can be represented

with n-bits. Out of 2n combinations of n-bits, first
2
2

n
 combinations are used to denote the

positive numbers and next
2
2

n
 combinations represent the negative numbers.

Example. In a signed representation given binary string is (11101)2. What will be the sign
and magnitude of the number represented by this string in signed magnitude, 1’s complement
and 2’s complement representation.

Solution.

The number N = (11101)2
since MSB = 1 the given number is negative.

Numbering Systems 33

(i) In signed Magnitude MSB denotes sign and rest of the bits represent magnitude. So,

(ii) In 1’s complement if number is negative (i.e., MSB = 1) then the magnitude is
obtained by taking 1’s complement of given number.

1’s complement of (11101)2 = (00010)2

so (11101)2 = –2 in 1’s complement.

(iii) In 2’s complement if number is negative (i.e., MSB = 1) then magnitude is obtained
by taking 2’s complement of given number.

2’s complement of (11101)2 = (00011)2
= 3

so (11101)2 = –3 in 2’s complement.

Example. Obtain an 8-bit representation of –9 in signed Magnitude, 1’s complement and
2’s complement representation.

Solution. We first find binary of 9 i.e., (9)10 = (1001)2

Next we represent 9 using 8-bits. So N = (00001001)2

= (9)10

(i) In signed Magnitude, MSB shows sign and rest of the bits shows true magnitude. So,

(–9)10 = (10001001)2

(ii) In 1’s complement, negative number is represented by taking 1’s complement of
positive number. So,

(–9)10 = 1’s complement of (00001001)2

= (11110110)2
(iii) In 2’s complement

(–9)10 = 2’s complement of (00001001)2

= (11110111)2
1.7.4 Arithmetic Overflow

When the result of an arithmetic operation requires n+1 bits, upon operating on n-bits
number, an overflow occurs. Alternately, if result exceeds the range 0 to 2n – 1, an overflow
occurs.

Let us consider the addition of two 4-bit numbers

Thus addition of two 4-bits numbers requires 5-bits (n+1 bits) to represent the sum.
Alternately, the result of addition of 4-bits, falls outside the range 0 to 15 (i.e., 0 to 24–1).
Thus, overflow has occured.

34 Switching Theory

In case of signed arithmetic the overflow causes the sign bit of the answer to change.
In this case an overflow occurs if the result does not lie in the range –2n–1 to 2n–1 – 1. In
signed arithmetic overflow can occur only when two positive numbers or two negative num-
bers are added.

Let us consider 4-bit signed 2’s complement representation.

1. Addition of two positive numbers +6 and +5

Since MSB of result is 1, if reflects a negative result which is incorrect. It happened
because overflow has changed the sign of result.

2. Addition of two negative numbers –6 and –5

In 2’s complement if a carry is generated after the addition then carry is discarded and
result is declared positive. Thus, result = (0101)2 = +5 which is wrong, because addition of
two negative numbers should give a negative result. This happened due to overflow.

Note that overflow is a problem that occurs when result of an operation exceeds the
capacity of storage device. In a computer system the programmer must check the overflow
after each arithmetic operation.

1.7.5 9’s and 10’s Complement

9’s and 10’s complements are the methods used for the representation of decimal num-
bers. They are identical to the 1’s and 2’s complements used for binary numbers.

9’s complement: 9’s complement of a decimal number is defined as (10n – 1) – N, where n
is no. of digits and N is given decimal numbers. Alternately, 9’s complement of a decimal number
can be obtained by subtracting each digit from 9. 9’s complement of N = (10n–1) – N.

Example. Find out the 9’s complement of following decimal numbers.

(i) 459 (ii) 36 (iii) 1697

Solution. (i) By using (10n–1) – N; But, n = 3 in this case

So, (10n–1) – N = (103 – 1) – 459 = 540

Thus 9’s complement of 459 = 540

(ii) By subtracting each digit from 9

9 9

–3 6

6 3

So, 9’s complement of 36 is 63.

Numbering Systems 35

(iii) We have N = 1697, so n = 4

Thus, 10n–1 = 104 – 1 = 9999

So, (10n–1) – N = (104–1) – 1697 = 9999 – 1697

= 8302

Thus, 9’s complement of 1697 = 8302

10’s complement: 10’s complement of a decimal number is defined as 10n – N.

10’s complement of N = 10n – N

but 10n – N = (10n – 1) – N + 1

= 9’s complement of N + 1

Thus, 10’s complement of a decimal number can also be obtained by adding 1 to its 9’s
complement.

Example. Find out the 10’s complement of following decimal numbers. (i) 459 (ii) 36.

Solution. (i) By using 10n – N; We have N = 459 so n = 3

So, 10n – N = 103 – 459 = 541

So, 10’s is complement of 459 = 541

(ii) By adding 1 to 9’s complement

9’s complement of 36 = 99 – 36

= 63

Hence, 10’s complement of 36 = 63 + 1

= 64

1.7.6 r’s Complement and (r – 1)’s Complement

The r’s and (r – 1)’s complements are generalized representation of the complements, we
have studied in previous subsections. r stands for radix or base of the number system, thus
r’s complement is referred as radix complement and (r – 1)’s complement is referred as
diminished radix complement. Examples of r’s complements are 2’s complement and 10’s
complement. Examples of (r – 1)’s complement are 1’s complement and 9’s complement.

In a base-r system, the r’s and (r – 1)’s complement of the number N having n digits,
can be defined as:

(r – 1)’s complement of N = (rn – 1) – N

and r’s complement of N = rn – N

= (r – 1)’s complement of N + 1

The (r – 1)’s complement can also be obtained by subtracting each digit of N from
r–1. Using the above methodology we can also define the 7’s and 8’s complement for octal
system and 15’s and 16’s complement for hexadecimal system.

1.7.7 Rules for Subtraction Using r’s and (r–1)’s Complement

Let M (minuend) and S (subtrahend) be the two numbers to be used to evaluate the
difference D = M – S, by using r’s complement and (r – 1)’s complements, and either or both
the numbers may be signed or unsigned.

36 Switching Theory

Untill and unless specified the given rules are equally applied to both the complements
for both signed and unsigned and arithmetic. For the clarity of process let us assume that
two data sets are:

Unsigned data— Mu = 1025, Su = 50 and Du = Mu – Su

Signed data— Ms = –370, Ss = 4312 and Ds = Ms – Ss

For illustration purpose (r – 1)’s complement is used for unsigned and r’s complement
for signed arithmetic.

Step 1. Equate the Length

Find out the length of both the numbers (no. of digit) and see if both are equal. If not,
then make the both the numbers equal by placing leading zeroes.

Mu = 1025, Su = 50 → So Su = 0050

Ms = –370, Ss = 4312 → Ms = –0370

Step 2. Represent Negative Operands (for Negative Numbers only)

If either or both of operands are negative then take the appropriate complement of the
number as obtained in step 1.

Ms = –370, → r’s of Ms = 9999 – 0370 + 1 → Ms = 9630 and Ss = 4312

Step 3. Complement the Subtrahend

In order to evaluate difference take the appropriate complement of the representation
obtained for the SUBTRAEND SU in step 1 and SS in step 2.

Su = 0050, (r – 1)’s of Su = 9999 – 0050 → Su = 9949 and we’ve Mu = 1025

Ss = 4312, r’s of Ss = 9999 – 4312 + 1 → Ss = 5688 and we’ve Ms = 9630

Step 4. Addition and The Carry (CY)

Add the two numbers in the step 3 and check weather or not carry generated from MSD
(Most Significant Digit) due to addition.

Mu = 1025, Su = 9949 → So Du = Mu – Su = 10974
↓
CY

Ms = 9630, Ss = 5688 → So Ds = Ms – Ss = 15318
↓
CY

Step 5. Process the Carry (CY)

In step 4, we obtained result as CY, D. The CY from MSD contains some useful
information especially in some unsigned arithmetic. Processing is different for two comple-
ment.

• For r’s complement. In the case of r’s complement if there is carry from MSD in
step 4 then simply discard it. We are using r’s complement to perform signed
operation. In step 4 we get CY = 1, Ds = 5318 after discarding the CY.

• For (r – 1)’s complement. In this case if a carry is generated from MSD in step 4,
add this carry to the LSD of the result. (We are using r – 1’s complement for

Numbering Systems 37

unsigned) In step 4 we got CY = 1, Du = 0974 after adding carry to the LSD (from
MSD in step 4 we get Du = 0974 + 1 → 0975. In this case carry is called “end-around
carry”.

Step 6. Result Manipulation

The manipulation of result is same for both the complements. The way result is manipu-
lated is different for signed and unsigned arithmetic.

(a) UNSIGNED

(1) If a carry was generated in step 4 then the result is positive(+) and the digits in
the result shows the correct magnitude of result.

(2) If there is no carry from MSD in step 4 then the result is negative (–) and the digits
in result is not showing the correct magnitude. So must go for a post processing
(Step 7) of result to determine the correct magnitude of the result.

(b) SIGNED

(1) If the MSD of result obtained in step 5 is lesser than the half radix (i.e., MSD <
r/2) then the result is +ve and representing the correct magnitude. Thus no post
processing is required.

(2) If the MSD of result obtained in step 5 is not lesser than the half radix (i.e., MSD
> r/2) = then the result is –ve and correct magnitude of which must be obtained
by post processing (Step 7).

Step 7. Post Processing and Result Declaration

By the step 6 (a) – 1 and the step 6 (b) – 1 we know that if the result is +ve (positive)
it represents the correct magnitude weather it is signed or unsigned arithmetic. However for
the negative results are not showing correct magnitudes so post processing in principle is
needed for declaration of negative results.

(a) Declare positive results. As per the rules the result of the unsigned arithmetic is
positive.

Du = +0975 (Ans.)

(b) Process and declare negative results. As per the rules result of signed arithmetic
is negative and is in complemented form. Take the appropriate complement to find
the complement and declare the result.

r’s of Ds = 5318 = 9999 – 5318 + 1 = –4682 (Ans.)

1.8 BINARY CODED DECIMAL (BCD) AND ITS ARITHMETIC

The BCD is a group of four binary bits that represent a decimal digit. In this repre-
sentation each digit of a decimal number is replaced by a 4-bit binary number (i.e., a
nibble). Since a decimal digit is a number from 0 to 9, a nibble representing a number
greater than 9 is invalid BCD. For example (1010)2 is invalid BCD as it represents a
number greater than 9. The table shown in Fig. 1.13 lists the binary and BCD represen-
tation of decimal numbers 0 to 15. Carefully observe the difference between binary and
BCD representation.

38 Switching Theory

Decimal Binary Representation BCD Representation
Number

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 0

3 0 0 1 1 0 0 1 1

4 0 1 0 0 0 1 0 0

5 0 1 0 1 0 1 0 1

6 0 1 1 0 0 1 1 0

7 0 1 1 1 0 1 1 1

8 1 0 0 0 1 0 0 0

9 1 0 0 1 1 0 0 1

10 1 0 1 0 0 0 0 1 0 0 0 0

11 1 0 1 1 0 0 0 1 0 0 0 1

12 1 1 0 0 0 0 0 1 0 0 1 0

13 1 1 0 1 0 0 0 1 0 0 1 1

14 1 1 1 0 0 0 0 1 0 1 0 0

15 1 1 1 1 0 0 0 1 0 1 0 1

Fig. 1.13 Binary and BCD representation of decimal numbers

BCD Addition: In many application it is required to add two BCD numbers. But the
adder circuits used are simple binary adders, which does not take care of peculiarity of BCD
representation. Thus one must verify the result for valid BCD by using following rules:

1. If Nibble (i.e., group of 4-bits) is less than or equal to 9, it is a valid BCD Number.

2. If Nibble is greater than 9, it is invalid. Add 6 (0110) to the nibble, to make it valid.

OR

If a carry was generated from the nibble during the addition, it is invalid. Add 6
(0110) to the nibble, to make it valid.

3. If a carry is generated when 6 is added, add this carry to next nibble.

Example. Add the following BCD numbers. (i) 1000 and 0101 (ii) 00011001 and 00011000
Solution. (i)

Since, (1101)2 > (9)10 add 6 (0110) to it

So,

So, result = 00010011

Numbering Systems 39

(ii) 1
0 0 0 1
0 0 0 1
0 0 1 1

1 0 0 1
1 0 0 0
0 0 0 1

19
+18

37

Carry generated from nibble

Since, a carry is generated from right most nibble we must add 6 (0110) to it.

So,

So, result = 00110111

BCD Subtraction. The best way to cary out the BCD subtraction is to use comple-
ments. The 9’s and 10’s complement, studied in subsection 1.7.5, are exclusively used for this
purpose. Although any of the two complements can be used, we prefer 10’s complement for
subtraction. Following are the steps to be followed for BCD subtraction using 10’s comple-
ment:

1. Add the 10’s complement of subtrahend to minuend.

2. Apply the rules of BCD addition to verify that result of addition is valid BCD.

3. Apply the rules of 10’s complement on the result obtained in step 2, to declare the
final result i.e., to declare the result of subtraction.

Example. Subtract 61 from 68 using BCD.

Solution. To illustrate the process first we perform the subtraction using 10’s comple-
ment in decimal system. After that we go for BCD subtraction.

we have D = 68 – 61

So, 10’s complement of 61 = 99 – 61 + 1 = 39

So, 6 8

+ 3 9

1 0 7
↑
Carry

In 10’s complement if an end carry is produced then it is discarded and result is declared
positive. So,

D = +07

by using BCD

1.

2. Check for valid BCD– since a carry is generated from right most nibble, we must add
6 (0110) to it. Since the left most nibble is greater than 9, we must add 6(0110) to it.

40 Switching Theory

Thus,

3. Declaration of result – We got end carry is step 2. In 10’s complement arithmetic, end
carry is discarded and result is declared positive. Hence,

D = (00000111)2 = (7)10

1.9 CODES

Coding and encoding is the process of assigning a group of binary digits, commonly
referred to as ‘bits’, to represent, identify, or relate to a multivalued items of information. By
assigning each item of information a unique combination of bits (1’s and o’s), we transform
some given information into another form. In short, a code is a symbolic representation of
an information transform. The bit combination are referred to as ‘CODEWORDS’.

There are many different coding schemes, each having some particular advantages and
characteristics. One of the main efforts in coding is to standardize a set of universal codes
that can be used by all.

In a broad sense we can classify the codes into five groups:
(i) Weighted Binary codes

(ii) Non-weighted codes
(iii) Error–detecting codes
(iv) Error–correcting codes
(v) Alphanumeric codes.

1.9.1 Weighted Binary Codes

In weighted binary codes, each position of a number represents a specific weight. The
bits are multiplied by the weights indicated; and the sum of these weighted bits gives the
equivalent decimal digit. We have been familiar with the binary number system, so we shall
start with straight binary codes.

(a) Straight Binary coding is a method of representing a decimal number by its binary
equivalent. A straight binary code representing decimal 0 through 7 is given in table below:

Decimal Three bit straight Weights MOI Sum
Binary Code 22 21 20

0 000 0 0 0 0

1 001 0 0 1 1

2 010 0 2 0 2

3 011 0 2 1 3

4 100 4 0 0 4

5 101 4 0 1 5

6 110 4 2 0 6

7 111 4 2 1 7

Numbering Systems 41

In this particular example, we have used three bits to represent 8 distinct elements of
information i.e., 0 through 7 in decimal form.

Now the question arises, if n elements of information are to be coded with binary (two
valued bits), then how many bits are required to assign each element of information a unique
code word (bit combination). Unique is important, otherwise the code would be ambiguous.

The best approach is to evaluate how many code words can be derived from a combina-
tion of n bits.

For example: Let n = no. of bits in the codeword and x = no. of unique words

Now, if n = 1, then x = 2 (0, 1)

n = 2, then x = 4 (00, 01, 10, 11)

n = 3, then x = 8 (000, 001, ..., 111)

and in general, n = j, then x = 2 j

that is, if we have available j no. of bits in the code word, we can uniquely encode max 2 j

distinct elements of information.

Inversely, if we are given x elements of information to code into binary coded format,
the following condition must hold:

x < 2 j

or j > log2 x

or j > 3.32 log10 x

where j = number of bits in code word.

Example. How many bits would be required to code the 26 alphabetic characters plus the
10 decimal digits.

Solution. Here we have total 36 discrete elements of information.

⇒ x = 36

Now j > log2 x

⇒ j > log2 36 or j > 3.32 log10 36

or j > 5.16 bits

Since bits are not defined in fractional parts, we know j > 6.

In other words, a minimum of 6 bit code is required that leaves 28 unused code words
out of the 64 which are possible (26 = 64 and 64 – 36 = 28).

This system of straight binary coding has the disadvantage that the large numbers
require a great deal of hardware to handle with. For example if we have to convert decimal
2869594 to straight binary code a regrous division of this number by 2 is required untill we
get remainder 0 or 1.

The above difficulty is overcomed by using another coding scheme called as BCD codes.

(b) Binary Codes Decimal Codes (BCD codes). In BCD codes, individual decimal
digits are coded in binary notation and are operated upon singly. Thus binary codes represent-

42 Switching Theory

ing 0 to 9 decimal digits are allowed. Therefore all BCD codes have at least four bits (Q min.
no. of bits required to encode to decimal digits = 4)

For example, decimal 364 in BCD

3 → 0011

6 → 0110

4 → 0100

364 → 0011 0110 0100

However, we should realize that with 4 bits, total 16 combinations are possible (0000,
0001, ..., 11 11) but only 10 are used (0 to 9). The remaining 6 combinations are unvalid and
commonly referred to as ‘UNUSED CODES’.

There are many binary coded decimal codes (BCD) all of which are used to represent
decimal digits. Therefore all BCD codes have atleast 4 bits and at least 6 unassigned or
unused code words.

Some example of BCD codes are:

(a) 8421 BCD code, sometimes referred to as the Natural Binary Coded Decimal Code
(NBCD);

(b)* Excess-3 code (XS3);

(c)** 84 –2 –1 code (+8, +4, –2, –1);

(d) 2 4 2 1 code

Example. Lowest [643]10 into XS3 code

Decimal 6 4 3

Add 3 to each 3 3 3

Sum 9 7 6

Converting the sum into BCD code we have

0 7 6

↓ ↓ ↓
1001 0111 0110

Hence, XS3 for [643]10 = 1001 0111 0110

*–XS3 is an example of nonweighted code but is a type of BCD code. It is obtained by adding 3 to a
decimal number. For example to encode the decimal number 7 into an excess 3 code. We must first add
3 to obtain 10. The 10 is then encoded in its equivalent 4 bit binary code 1010. Thus as the name
indicates, the XS3 represents a decimal number in binary form, as a number greater than 3.

** – Dashes (–) are minus signs.

Numbering Systems 43

Table : BCD codes
Decimal 8421 Excess-3 84–2–1 2421

Digit (NBCD) code (XS3) code code

0 0000 0011 0000 0000

1 0001 0100 0111 0001

2 0010 0101 0110 0010

3 0011 0110 0101 0011

4 0100 0111 0100 0100

5 0101 1000 1011 1011

6 0110 1001 1010 1100

7 0111 1010 1001 1101

8 1000 1011 1000 1110

9 1001 1100 1111 1111

There are many BCD codes that one can develop by assigning each column or bit position
in the code, some weighting factor in such a manner that all of the decimal digits can be coded
by simply adding the assigned weights of the 1 bits in the code word.

For example: 7 is coded 0111 in NBCD, which is interpreted as

0 × 8 + 1 × 4 + 1 × 2 + 1 × 1 = 7
The NBCD code is most widely used code for the representation of decimal quantities in

a binary coded formet.
For example: (26.98) would be represented in NBCD as

2 6 9 8
(26.98)10 = (0010 0110. 1001 1000) NBCD

It should be noted that on the per digit basis the NBCD code is the binary numeral
equivalent of the decimal digit it represents.

Self complementing BCD codes
The excess 3, 8 4–2–1 and 2421 BCD codes are also known as self complementing codes.
Self complementing property– 9’s complement of the decimal number is easily obtained

by changing 1’0 to 0’s and 0’s to 1’s in corresponding codeword or the 9’s complement of self
complementing code word is the same as its logical complement.

When arithmetic is to be performed, often an arithmetic “complement” of the numbers
will be used in the computations. So these codes have a particular advantage in machines that
use decimal arithmetic.

Example. The decimal digit 3 in 8.4–2–1 code is coded as 0101. The 9’s complement of
3 is 6. The decimal digit 6 is coded as 1010 that is 1’s complement of the code for 3. This is
termed as self complementing property.

1.9.2 Non Weighted Codes
These codes are not positionally weighted. This means that each position within a binary

number is not assigned a fixed value. Excess-3 codes and Gray codes are examples of non-
weighted codes.

We have already discussed XS3 code.

44 Switching Theory

Gray code (Unit Distance code or Reflective code)
There are applications in which it is desirable to represent numerical as well as other

information with a code that changes in only one bit position from one code word to the next
adjacent word. This class of code is called a unit distance code (UDC). These are sometimes
also called as ‘cyclic’, ‘reflective’ or ‘gray’ code. These codes finds great applications in Boolean
function minimization using Karnaugh map.

The gray code shown in Table below is both reflective and unit distance.

Table : Gray codes*
Decimal Three bit Four bit

Digit Gray code Gray code

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1

2 0 1 1 0 0 1 1

3 0 1 0 0 0 1 0

4 1 1 0 0 1 1 0

5 1 1 1 0 1 1 1

6 1 0 1 0 1 0 1

7 1 0 0 0 1 0 0

8 – 1 1 0 0

9 – 1 1 0 1

10 – 1 1 1 1

11 – 1 1 1 0

12 – 1 0 1 0

13 – 1 0 1 1

14 – 1 0 0 1

15 – 1 0 0 0

0
1

1
0

0
1

2
3

0
0

1
1

00
01
11
10

10
11
01
00

0
1
2
3

4
5
6
7

0
0
0
0

1
1
1
1

*Gray codes are formed by reflection. The technique is as follows:

In binary we have two digits 0 and 1.

Step I. Write 0 and 1 and put a mirror, we first see 1 and
then 0. Place 0’s above mirror and 1’s below mirror

We have got gray code for decimal digits 0 through 4.

Step II. Write these 4 codes and again put a mirror. The code
will look in the order 10, 11, 01 and 00. Then place 0’s above
mirror and 1’s below mirror.

Proceeding intactively in the same manner. We can form Gray
code for any decimal digit.

Numbering Systems 45

Binary to Gray conversion
(1) Place a leading zero before the most significant bit (MSB) in the binary number.

(2) Exclusive-OR (EXOR) adjacent bits together starting from the left of this number
will result in the Gray code equivalent of the binary number.

Exclusive–OR– If the two bits EX–OR’d are identical, the result is 0; if the two bits differ,
the result is 1.

Example. Convert binary 1010010 to Gray code word.

0 1 0 1 0 0 1 0

1 1 1 1 0 1 1
⇒ (1010010) = (1111011)2 Gray .

Gray to Binary conversion
Scan the gray code word from left to right. The first 1 encountered is copied exactly as

it stands. From then on, 1’s will be written untill the next 1 is encountered, in which case
a 0 is written. Then 0’s are written untill the next 1 is encountered, in which case a 1 is
written, and so on.

Example 1. Convert Gray code word 1111011 into binary.

1 1 1 1 0 1 1

↓ ↓ ↓ ↓ ↓ ↓ ↓ ⇒ (1111011)Gray = (1010010)2.

1 0 1 0 0 1 0

Example 2. Convert Gray code word 10001011 into binary.

1 0 0 0 1 0 1 1

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 1 1 1 0 0 1 0

⇒ (10001011)Gray = (11110010)2.

1.9.3 Error Detecting Codes
Binary information is transmitted from one device to another by electric wires or other

communication medium. A system that can not guarantee that the data received by one
device are identical to the data transmitted by another device is essentially useless. Yet
anytime data are transmitted from source to destination, they can become corrupted in
passage. Many factors, including external noise, may change some of the bits from 0 to 1 or
viceversa. Reliable systems must have a mechanism for detecting and correcting such errors.

Binary information or data is transmitted in the form of electro magnetic signal over a
channel whenever an electromagnetic signal flows from one point to another, it is subject to
unpredictable interference from heat, magnetism, and other forms of electricity. This inter-
ference can change the shape or timing of signal. If the signal is carrying encoded binary data,
such changes can alter the meaning of data.

In a single bit error, a 0 is changed to a 1 or a 1 is changed to a 0.

In a burst error, multiple (two or more) bits are changed.

The purpose of error detection code is to detect such bit reversal errors. Error detection
uses the concept of redundancy which means adding extra bits for detecting errors at the
destination.

46 Switching Theory

For a single bit error detection, the most common way to achieve error detection is by
means of a parity bit.

A parity bit is an extra bit (redundant bit) included with a message to make the total
number of 1’s transmitted either odd or even.

Table below shows a message of three bits and its corresponding odd and even parity bits.

If an odd parity is adopted, P bit is choosen such that the total no. of 1’s is odd in four
bit that constitute message bits and P.

If an even parity is adopted, the P bit is choosen such that the total number of 1’s is even.

Table: Parity bit generation
Message Odd Even Parity

x y z Parity (P) bit (P)
bit

0 0 0 1 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

The message with the parity bit (either odd or even) is transmitted to its destination. The
parity of the received data is checked at the receiving end. If the parity of the received data is
changed (from that of transmitted parity), it means that at least one bit has changed their value
during transmission. Though the parity code is meant for single error detection, it can detect any
odd number of errors. However, in both the cases the original codeword can not be found.

If there is even combination of errors (means some bits are changed but parity remains
same) it remains undetected.

Checksums–The checksum method is used to detect double errors in bits. Since the
double error will not change the parity of the bits, the parity checker will not indicate any
error.

In the checksums method, Initially a word A (let 11001010) is transmitted, next word B
(let 00101101) is transmitted. The sum of these two words is retained in the transmitter. Then
a word C is transmitted and added to the previous sum; and the new sum is retained.
Similarly, each word is added to the previous sum; after transmission of all the words, the
final sum called the checksum is also transmitted. The same operation is done at the receiv-
ing end and the final sum obtained here is checked against the transmitted checksum. If the
two sums are equal there is no error.

Burst Error Detection
So far we have considered detecting or correcting errors that occur independently or

randomly in digit positions. But disturbances can wipe out an entire block of digits. For
example, a stroke of lightenning or a human made electrical disturbance can affect several
transmitted digits. Burst errors are those errors that wipe out some or all of a sequential set
of digits.

Numbering Systems 47

A burst of length b is defined as a sequence of digits in which the first digit and b for
Ball digit are in error, with the b-2 digits in between either in error or received correctly. For
Example l and m represent errors then a sequence 10Ml 10 m00 l10l01mM10 has a burst
length 13.

It can be shown that for detecting all burst errors of length b or less; b parity check bits
are necessary and sufficient.

To construct such a code, lets group k data digits into segment of b digits in length as
shown below:

1101 0101 1110 0100 0010
b digits

Parity check bitsk data bits

Burst error detection

To this we add a last segment of b parity check digits, which are determined as follows:

‘The modulo-2 sum* of the ith digit in each segment (including the parity check segment)
must be zero.”

It is easy to see that if a single sequence of length b or less is in error, parity will be
violated and the error will be detected and the reciever can request retransmission of code.

1.9.4 Error Correcting Codes

The mechanism that we have covered upto this point detect errors but do not correct
them. Error correction can be handled in two ways. In one, when an error is encountered
the receiver can request the sender to retransmit entire data unit. In the other, a receiver
can use an error correcting code, which automatically corrects certain errors.

In theory, it is possible to correct any binary code errors automatically using error
correcting codes, however they require more reductant bits than error detecting codes.
The number of bits required to correct a multiple-bit or burst error is so high that in most
cases, it is inefficient to do so. For this reason, most error correction is limited to one,
two, or three-bit errors. However, we shall confine our discussion to only single bit error
correction.

As we saw earlier, single bit errors can be detected by the addition of a redundant (parity)
bit to the data (information) unit. This provides sufficient base to introduce a very popular
error detection as well correction codes, known as Block codes.

Block codes: [(n, k) codes] In block codes, each block of k message bits is encoded into
a larger block of n bits (n > k), as shown. These are also known as (n, k) codes.

Modulo–2 sum denoted by symbol ⊕ with the rules of addition as follows:

0 0 0

0 1 1
1 0 1
1 1 0

⊕ =
⊕ =
⊕ =
⊕ =

R

S
||

T
|
|

U

V
||

W
|
|

48 Switching Theory

The reductant* (parity) bits ‘r’ are derived from message bits ‘k’ and are added to them.
The ‘n’ bit block of encoder output is called a codeword.

M essage
b lock

M essage

k bits

ENCO DE R

Code
b lock

M essage Redundant b its

k bits r b its

Code n bits = (k + r) bits

The simplest possible block code is when the number of reductant or parity bits is one.
This is known as parity check code. It is very clear that what we have studied in single bit
error detection is nothing but a class of ‘Block codes’.

R.W. Hamming developed a system that provides a methodical way to add one or more
parity bit to data unit to detect and correct errors weight of a code.

Hamming distance and minimum distance
The weight of a code word is defined as the number of nonzero components in it. For

example,
Code word Weight

010110 3

101000 2

000000 0

The ‘Hamming distance’ between two code words is defined as the number of components
in which they differ.

For example, Let U = 1010
V = 0111

W = 1001
Then, D (U, V) = distance between U and V = 3
Similarly, D (V, W) = 3
and D (U, W) = 2
The ‘minimum distance’ (Dmin) of a block code is defined is the smallest distance between

any pair of codewords in the code.
From Hamming’s analysis of code distances, the following important properties have

been derived. If Dmin is the minimum distance of a block code then
(i) ‘t’ number of errors can be detected if

Dmin = t + 1
(ii) ‘t’ number of errors can be corrected if

Dmin = 2t + 1
It means, we need a minimum distance (Dmin) of at least 3 to correct single error and

with this minimum. distance we can detect upto 2 errors.

*The ‘r’ bit are not necessarily appear after ‘k’ bits. They may appear at the starting, end or in between
‘k’ data bits.

Numbering Systems 49

Now coming to our main objective i.e., error correction, we can say that an error occurs
when the receiver reads 1 bit as a 0 or a 0 bit as a 1. To correct the error, the reciever simply
reverses the value of the altered bit. To do so, however, it must know which bit is in error.
The secret of error correction, therefore, is to locate the invalid bit or bits.

For example, to correct a single bit error in a seven bit data unit, the error correction code
must determine, which of the seven data bits has changed. In the case we have to distinguish
between eight different states: no error, error in position 1, error in position 2, and so on, upto
error in position 7. To do so requires enough redudant bits to show all eight states.

At first glance, it appears that a 3-bit redundant code should be adequate because three
bits can show eight different states (000 to 111) and can thus indicate the locations of eight
different possibilities. But what if an error occurs in the redundant bits themselves. Seven
bits of data plus three bits of redundancy equals 10 bits. Three bits, however, can identify only
eight possibilities. Additional bits are necessary to cover all possible error locations.

Redundant Bits
To calculate the number of redundant bits (r) required to correct a given no. of data bits

(k), we must find a relationship between k and r. Figure shows k bits of data with r bits of
redundancy added to them. The length of the resulting code is thus n = k + r.

If the total no. of bits in code is k + r, then r must be able to indicate at least k + r + 1
different states. Of these, one state means no error and k + r states indicate the location of
an error in each of the k + r positions.

Data () bitsk Redundant
() bitsr

Tota l + = b itsk r n

Alternatively, we can say the k + r + 1 status must be discoverable by r bits; and r bits
can indicate 2r different states. Therefore, 2r must be equal to or greater than k + r + 1:

2r > k + r + 1

The value of r can be determined by plugging in the value of k (the length of data unit).
For example, if the value of k is 7 (⇒ seven bit data), the smallest r value that can satisfy
this equation is 4:

24 > 7 + 4 + 1

and 23 > 7 + 4 +1

1.9.5 Hamming Code
So far, we have examined the number of bits required to cover all of the possible single

bit error states in a transmission. But how do we manipulate those bits to discover which state
has occured ? A technique developed by R.W. Hamming provides a practical solution, Hamming
code is a class of block code (n, k) and we are going to discuss (11, 7) Hamming code.

Positioning the Redundant bits
The ‘Hamming code’ can be applied to data units of any length and uses the relationship

between data and redundant bits as discussed above. As we have seen, a 7 bit data unit (⇒
k = 7) requires 4 redundant bits (⇒ r = 4) that can be added to the end of data unit (or
interspersed with data bits). Such that a code word of length 11 bits (n = 11) is formed.

50 Switching Theory

In figure these bits are placed in positions 1, 2, 4 and 8 (the positions in an 11-bit
sequence that are powers of 2). We refer these bits as r1, r2, r4 and r8.

9 8 7 6 5 4 3 2 11011 Bits ()n

d 7 d 6 d 5 r4 d 4 d3 d2 r3 d 1 r2 r1

Redundant b its

In the Hamming code, each r bit is the redundant bit for one combination* of data bits.
The combinations (modulo-2 additions) used to calculate each of four r values (viz, r1, r2, r4
and r8) for a 7 bit data sequence d1 through d7 are as follows:

r1 : bits 1, 3, 5, 7, 9, 11

r2 : bits 2, 3, 6, 7, 10, 11

r4 : bits 4, 5, 6, 7

r8 : bits 8, 9, 10, 11

Each data bit may be included in more than one redundant bit calculation. In the sequences
above, for example, each of the original data bits is included in at least two sets, while the
r bits are included in only one.

To see the pattern behind this strategy, look at the binary representation of each bit
position. The r1 bit is calculated using all bit positions whose binary representation includes
a 1 in the right most position. The r2 bit is calculated using all bit positions with a 1 in the
second position, and so on. (see Fig.)

11

d 7 d 6 d 5 r8 d 4 d3 d2 r4 d 1 r2 r1

9 7 5 3 1
1011 1001 0111 0101 0011 0001

r w ill take care
o f these bits
1

11

d 7 d 6 d 5 r8 d 4 d3 d2 r4 d 1 r2 r1

10 7 6 3 2
1011 1010 0111 0110 0011 0010

r w ill take care
o f these bits
2

*In codes combination of bits means modulo 2 addition the data bits. Modulo-2 addition applies
in binary field with following rules.

0 0⊕ = 0 Modulo 2 → ⊕

0 1⊕ = 1

1 0⊕ = 1

1 1⊕ = 0

Numbering Systems 51

d 7 d 6 d 5 r8 d 4 d3 d2 r4 d 1 r2 r1

7 5 4
0111 0101 0100

r w ill take care
o f these bits
4

11

d 7 d 6 d 5 r8 d 4 d3 d2 r4 d 1 r2 r1

10 9 8
1011 1010 1001 1000

r w ill take care
o f these bits
8

6
0110

Calculating the r values
Figure shows a Hamming code implementation for a 7 bit data unit. In the first step;

we place each bit of original data unit in its appropriate position in the 11-bit unit. For
example, let the data unit be 1001101.

In the subsequent steps; we calculate the EVEN parities for the various bit combina-
tions. The even parity value for each combination is the value of corresponding r bit. For
example, the value of r1 is calculated to provide even parity for a combination of bits 3, 5,
7, 9 and 11.

⇒ 1011 1001 0111 0101 0011 0001

Here the total no. of 1’s are 13. Thus to provide even parity r1 = 1.

Similarly the value of r2 is calculated to provide even parity with bits 3, 6, 7, 10, r4 with
bits 5, 6, 7 and r with bits 9, 10, 11. The final 11-bit code is sent.

1 0 0 r8 1 1 0 r4 1 r2 r1

9 8 7 6 5 4 3 2 111 10

Data 1001101 →

Data

1 0 0 r8 1 1 0 r4 1 r2 1

9 8 7 6 5 4 3 2 111 10

Adding
r1

1 0 0 r8 1 1 0 r4 1 0 1

9 8 7 6 5 4 3 2 111 10

Adding
r2

1 0 0 r8 1 1 0 0 1 0 1

9 8 7 6 5 4 3 2 111 10

Adding
r4

1 0 0 1 1 1 0 0 1 0 1

9 8 7 6 5 4 3 2 111 10

Adding
r8

Code : 1001 110 0101

r = 1
r = 0
r = 0
r = 1
Thus
r r r r = 1 0 0 1

1

2

4

8

8 4 2 1

Sender ’s
parity

52 Switching Theory

Error detection and correction – Suppose above generated code is received with the
error at bit number 7 ⇒ bit has changed from 1 to 0 see figure below:

1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1

Rece ived Sent

Erro r

The receiver receives the code and recalculate four new redundant bits (r1, r2, r4 and
r8) using the same set of bits used by sender plus the relevant parity bit for each set shown
below

1 0 0 1 0 1 0 0 1 0 1

9 8 7 6 5 4 3 2 111 10

1 0 0 1 0 1 0 0 1 0 1

9 8 7 6 5 4 3 2 111 10

1 0 0 1 0 1 0 0 1 0 1

9 8 7 6 5 4 3 2 111 10

1 0 0 1 0 1 0 0 1 0 1

9 8 7 6 5 4 3 2 111 10

0 1 1 1

The bit in position 7 is in Erro r 7 in decima l←

r8 r4 r2 r1

Then it assembles the new parity values into a binary number in order of r position (r8,
r4, r2, r1). In our example, this step gives us the binary number 0111 (7 in decimal), which
is the precise location of the bit in error.

Once the bit is identified, the reciever can reverse its value and correct the error.

Note: If the new parity assembled is same as the parity at sender’s end mean no error.

1.9.6 Cyclic Codes

Binary cyclic codes form a subclass of linear block codes.
An (n, k) linear block code is called the cyclic code if it satisfies the following property:
If an n tuple (a row vector of n elements), V = (V0, V1, V2, . . ., Vn–1)
is a code vector or C, then the n tuple

V1 = (Vn–1, V0, V1, . . ., Vn–2)
obtained by shifting V cyclically one place to the right (it may be left also) is also a code vector
of C. From above definition it is clear that

Numbering Systems 53

V(i) = (Vn–i, Vn–i+1, . . ., V0, V1, . . . Vn–i–1).

An example of cyclic code:

1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 1
1 1 0 1

It can be seen that 1101, 1110, 0111, 1011 is obtained by a cyclic shift of n-tuple 1101
(n = 4). The code obtained by rearranging the four words is also a cyclic code. Thus 1110, 0111,
1011 are also cyclic codes.

This property of cyclic code allows to treat the codewords as a polynomial form. A
procedure for generating an (n, k) cyclic code is as follows:

The bits of uncoded word (message) Let D = [d0, d1, d2 ... dk–1] are written as the
coefficients of polynomial of degree k – 1.

D(x) = d0 x0 ⊕ d1x1 ⊕ d2x2 ⊕ ... ⊕ dk–1 xk–1

Similarly, the coded word, let V = [v0, v1, v2, ..., vn–1) are written as the coefficients of
polynomial of degree n – 1.

V(x) = v0x0 ⊕ v1x1 ⊕ v2x2 ⊕ . . . ⊕ vn–1 xn–1

The coefficients of the polynomials are 0’s and 1’s and they belong to the binary field with
the modulo-2 rules for addition as described in Hamming codes.

Now, we will state a theorem* which is used for cyclic code generation.
Theorem. If g(x) is a polynomial of degree (n–k) and is a factor of xn+1, then g(x)

generates an (n, k) cyclic code in which the code polynomial V(x) for a data polynomial D(x)
is given by

V(x) = D(x). g(x)
where V(x) – Code word polynomial of degree (n – 1)

D(x) – Data word polynomial of degree (k – 1)
g(x) – Generator polynomial of degree (n – k)

Example. Consider a (7, 4) cyclic code. The generator polynomial for this code is given
as g(x) = 1 + x + x3. Find all the code words of this code.

Solution. It is a (7, 4) cyclic code
⇒ n = No. of bits in coded word = 7

and k = No. of bits in data word = 4.
(n – k) = No. of redundant bits in code word = 3

It implies that, there are 16 different messages that are possible (10000, 0001, 0010
. . . 1110, 1111). Correspondingly, there will be 16 different codes (of 7 bits).

Now, according to above theorem, the generator polynomial g(x) must be a factor of
(xn + 1)** and of degree (n – k).

xn + 1 = x7 + 1
If we factorize this polynomial we get

x7+1 = (x + 1) (x3 + x + 1) (x3 + x2 + 1)
 I II III

*Without giving proof that is beyond the scope of this book.
**+ means modulo-2 operation ⊕ in binary codes.

54 Switching Theory

⇒ I Factor → x + 1
II Factor → x3 + x + 1

III Factor → x3 + x2 + 1

The I factor does not satisfy the requirement that it must be of degree (n – k) but the
II and III do satisfy.

Therefore, we can either choose II Factor or III Factor as generator polynomial g(x).
However, the set of codewords will naturally be different for these two polynomial.

In this example, we have taken g(x) as 1 + x + x3.
i.e., we have to encode the 16 messages using generator polynomial.

g(x) = 1 + x + x3.
Consider, for example, a data word 1010.
⇒ D = (d0, d1, d2, d3) = (1010)
Because the length is four, the data polynomial D(x)
will be of the form d0 + d1x + d2x2 + d3x3

⇒ D(x) = 1 + 0.x + 1.x2 + 0.x3 = 1 + x2

The code polynomial V(x) = D(x) . g(x)
= (1 + x2) . (1 + x + x3)

= 1 + x + x2 +
x x3 3 +

0
 + x5

⇒ V(x) = 1 + x + x2 + x5

Q if x = 1 then x3 = 1
or if x = 0 then x3 = 0

0 ⊕ 0 = 1 ⊕ 1 = 0
Because the length of codeword and (n) is 7.
So the standard polynomial will be of the form.

V(x) = V0 + V1x + V2x2 + V3x3 + V4x4 +V5x5 + V6x6

Comparing this standard polynomial with above poly. for V(x)
we get V = [1110010]
In a similar way, all code vectors can be found out.

1.10 SOLVED EXAMPLES
Example. 1. Convert each binary number to the decimal:
(a) (11)2 (b) (.11)2

(1011)2 (.111)2
(10111)2 (.1011)2
(1111)2 (.10101)2
(11010111)2 (.0101)2
(1001)2 (.110)2

(c) (11.11)2
(1011.1011)2
(1111.0101)2
(11010111.110)2
(1001.10101)2

Numbering Systems 55

Solution. (a) (11)2 = 1 × 21 + 1 × 20

= 2 + 1 = 3
(1011)2 = 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20

= 8 + 0 + 2 + 1 = 11
(10111)2 = 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20

= 16 + 0 + 4 + 2 + 1 = 23
(1111)2 = 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20

= 8 + 4 + 2 + 1 = 15
(11010111)2 = 1 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 +

1 × 21 + 1 × 20

= 128 + 64 + 0 + 16 + 0 + 4 + 2 + 1 = 215
(1001)2 = 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20

= 8 + 0 + 0 + 1 = 9
(b) (.11)2 = 1 × 2–1 + 1 × 2–2

= .5 + .25 = (.75)10
(.111)2 = 1 × 2–1 + 1 × 2–2 + 1 × 2–3

= .5 + .25 + .125 = (.875)10
(.1011)2 = 1 × 2–1 + 0 × 2–2 + 1 × 2–3 + 1 × 2–4

= .5 + 0 + .125 + .0625 = (.6875)10
(.10101)2 = 1 × 2–1 + 0 × 2–2 + 1 × 2–3 + 0 × 2–4 + 1 × 2–5

= .5 + 0 + .125 + 0 + .03125 = (.65625)10
(.0101)2 = 0 × 2–1 + 1 × 2–2 + 0 × 2–3 + 1 × 2–4

= 0 + .25 + 0 + .0625 = (.3125)10
(.110)2 = 1 × 2–1 + 1 × 2–2 + 0 × 2–3

= .5 + .25 + 0 = (.75)10
(c) 11.11 = ?

From part (a) and part (b), we see that
11 = 3
11 = .75

Therefore, (11.11)2 = (3.75)10
1011.1011 = ?

(1011)2 = 11
(.1011)2 = .6875

Therefore, (1011.1011)2 = (.6875)10
1111.0101 = ?

(1111)2 = 15
(.0101)2 = .3125

Therefore, (1111.0101)2 = (15.3125)10
11010111.110 = ?

11010111 = 215
.110 = .75

56 Switching Theory

(11010111.110)2 = (215.75)10
1001.10101 = ?

1001 = 9
.10101 = .65625

(1001.10101)2 = (9.65625)10

Example 2. How many bits are required to represent the following decimal numbers,
represent them in binary.

(I) (17)10 (II) (27)10 (III) (81)10 (IV) (112)10 (V) (215)10

Solution. (I) Let n bits required

n should be such that

2n > Given Number (N)

Therefore, 2n > 17

i.e., n > 5

Therefore minimum number of bits required = 5.

(II) (27)10

The minimum number of bits required is given by

2n > N (given number)

2n > 27

i.e., n > 5

(III) (81)10

The minimum number of bits required is given by

2n > N

2n > 81

i.e., n = 7

(IV) (112)10

The minimum number of required is given by

2n > N

2n > 112

i.e., n = 7

Numbering Systems 57

(V) (215)10

The minimum number of bits required is given by

2n > 215

i.e., n = 8

Example 3. Convert the following numbers as indicated:

(a) decimal 225.225 to binary, octal and hexadecimal.

(b) binary 11010111.110 to decimal, octal and hexadecimal.

(c) octal 623.77 to decimal, binary and hexadecimal.

(d) hexadecimal 2AC5.D to decimal, octal and binary.

Solution. (a) 225.225 = (?)2

(.225)10 = (?)2

.225 × 2 = 0.450

.450 × 2 = 0.900

.900 × 2 = 1.800

.800 × 2 = 1.600

.600 × 2 = 1.200

.200 × 2 = 0.400

.400 × 2 = 0.800

.800 × 2 = 1.600

.600 × 2 = 1.200

Fraction part = 001110011

58 Switching Theory

Therefore,

(225.225)10 = 11100001.001110011

(225.225)10 = (?)8

From the previous step we know the binary equivalent of decimal no. as 11100001.001110011.

For octal number, binary number is partitioned into group of three digit each starting
from right to left and replacing decimal equivalent of each group.

(225.225)10 = (341.163)8
(225.225)10 = (?)16

For hexadecimal number, instead of three four digits are grouped.

(225.225)10 = E1.398

(b) (11010111.110)2 = (?)10

From example 1.6.1

(11010111.110)2 = (215.75)10

(11010111.110)2 = (?)8

= 327

= 6

(11010111.110)2 = (327.6)8

(11010111.110)2 = (?)16

= D7

= C

(11010111.110)2 = (D7.C)16

(c) (623.77)8 = (?)2

623 = 110010011

.77 = 111111

Numbering Systems 59

(623.77)8 = (110010011.111111)2
(623.77)8 = (?)16

= 193

= FC

(623.77)8 = (193.FC)16

(623.77)8 = (?)10

623 = 6 × 82 + 2 × 81 + 3 × 80

= 384 + 16 + 3

= 403

.77 = 7 × 8–1 + 7 × 8–2

= 7 × .125 + 7 × .015625

= .875 + .109375

= 0.9843

(623.77)8 = (403.9843)10

(d) (2AC5.D)16 = (?)2

2AC5 = 0010101011000101

D = 1101

(2AC5.D)16 = (10101011000101.1101)2
(2AC5.D)16 = (?)8

(2AC5.D)16 = (25305.64)8

(2AC5.D)16 = (?)10

2AC5 = 2 × 163 + 10 × 162 + 12 × 161 + 5 × 160

= 2 × 4096 + 10 × 256 + 12 × 16 + 5 × 1

= 8192 + 2560 + 192 + 5

= 10949

D = 13 × 16–1

= 13 × .0625

= .8125

(2AC5.D)16 = (10949.8125)10

60 Switching Theory

Example 4. Obtain the 9’s and 10’s complement of the following decimal numbers.

(i) 10000, (ii) 00000, (iii) 13469, (iv) 90099, (v) 09900

Solution. 9’s complement

10’s complement = 9’s complement + 1 (LSB)

Example 5. Perform the subtraction with the decimal numbers given using
(1) 10’s complement.
(2) 9’s complement.
Check the answer by straight subtraction
(a) 5249 – 320 (b) 3571 – 2101.

Solution. (a) Using 10’s complement. 10’s complement of 320

Therefore, 5249 – 320 = 5249

+9680

CY →
discarded

Result = 4929

Using 9’s complement. 9’s complement of 320

Therefore, 5249 – 320 = 5249
+ 9679

CY →

Result = 4929
By straight subtraction

Hence, results are same by each method.

Numbering Systems 61

(b) Using 10’s complement

10’s complement of 2101 =

Therefore, 3571 – 2101 = 3571

+7899

CY →
discarded

Result = 470

Using 9’s complement

9’s complement of 2101 = 7898

Therefore, 3571 – 2101 = 3571

+7898

CY →

By straight subtraction

Hence, results are same by each method.

Example 6. Obtain the 1’s and 2’s complement of the following binary numbers

(I) 11100101 (II) 0111000 (III) 1010101 (IV) 10000 (V) 00000.

Solution.

 (I) 1’s complement = 00011010

2’s complement = 1’s complement + 1 = 00011011

(II) 1’s complement = 1000111

2’s complement = 1000111

1

(III) 1’s complement = 0101010

2’s complement = 0101011

(IV) 1’s complement = 01111

2’s complement = 10000

(V) 1’s complement = 11111

2’s complement = 00000

62 Switching Theory

1.11 EXERCISES
1. Write 9’s and 10’s complement of the following numbers:

+9090

–3578

+136.8

–136.28

2. (a) Convert the decimal integer’s +21 and –21 into 10’s complement and 9’s comple-
ment.

(b) Convert the above two numbers in binary and express them in six bit (total)
signed magnitude and 2’s complement.

3. (a) Find the decimal equivalent of the following binary numbers assuming signed
magnitude representation of the binary number:

(I) 001000 (II) 1111

(b) Write the procedure for the subtraction of two numbers with (r – 1)’s comple-
ment.

(c) Perform the subtraction with the following binary numbers using

2’s complement and 1’s complement respectively.

(I) 11010 – 1101 (II) 10010 – 10011

(d) Perform the subtraction with following decimal numbers using

10’s complement and 9’s complement respectively.

(I) 5294 – 749 (II) 27 – 289

4. Convert:

(I) (225.225)12 to Hexadecimal number.

(II) (2AC5.15)16 to Octal number.

5. Perform the following using 6’s complement:

(I) (126)7 + (42)7

(II) (126)7 – (42)7

6. Represent the following decimal numbers in two’s complement format:

(I) +5 (II) +25 (III) –5 (IV) –25 (V) –9

7. Represent the decimal numbers of question 6 in ones complement format.

8. Find the decimal equivalent of each of the following numbers assuming them to be
in two’s complement format.

(a) 1000 (b) 0110 (c) 10010 (d) 00110111

9. Convert the following octal numbers into equivalent decimal numbers:

(a) 237 (b) 0.75 (c) 237.75

10. Represent the following decimal numbers in sign-magnitude format:

(a) –11 (b) –7 (c) +12 (d) +25

2.0 INTRODUCTORY CONCEPTS OF DIGITAL DESIGN
George Boole, in his work entitled ‘An Investigation of the Laws of Thought’, on which

are founded the Mathematical Theories of Logic and Probability (1854), introduced the fundamen-
tal concepts of a two-values (binary) system called Boolean Algebra. This work was later
organized and systemized by Claude Shannon in ‘Symbolic Analysis of Relay and Switching
Circuits (1938)’. Digital design since that time has been pretty much standard and advanced,
following Boole’s and Shannon’s fundamentals, with added refinements here and there as new
knowledge has been unearthed and more exotic logic devices have been developed.

Digital design is the field of study relating the adoptation of Logic concepts to the design
of recognizable, realizable, and reliable degital hardware.

When we begin study of logic, digital logic, binary systems, switching circuits, or any
other field of study that can be classified as being related to digital design, we must concern
ourselves with learning some philosophical premises from which we must launch our studies.
In order to reach a desirable theoretical, as well as conceptual, understanding of digital
design, you must grasp some fundamental definitions and insight giving concepts.

Generally speaking, being involved in digital design is dealing in “LOGIC” a term that
certainly needs some definition. LOGIC, by definition, is a process of classifying information.
Information is intelligence related to ideas, meanings, and actions which can be processed or
transformed into other forms. For example, NEWS is information by virtue of the fact that
it is intelligence related to ACTIONS, be it good news or bad news. News can be heard, read,
seen or even felt or any combination of all four, indicating the possibility of its transformation
into different forms.

“BINARY LOGIC,” or two-valued logic, is a process of classifying information into two
classes. Traditionally, binary arguments, or that information which can be definitely classified
as two valued, has been delivered either TRUE or FALSE. Thus, the Boolean variable is
unlike the algebraic variables of the field of real numbers in that any Boolean variable can
take on only two values, the TRUE or the FALSE. Traditionally, (High or Low-Asserted or
Not Asserted) it is standard to use the shorthand symbols 1 for TRUE and 0 for the FALSE.

2.1 TRUTH TABLE
A Boolean variable can take on only two values, not an infinite number as, the variable

of the real number system, can. This basic difference allows us to illustrate all possible logic
conditions of a Boolean variable or a collection of Boolean variables using a finite tabuler

63

2
CHAPTER

DIGITAL DESIGN FUNDAMENTALS—
BOOLEAN ALGEBRA AND LOGIC GATES

64 Switching Theory

format called a ‘truth-table’. Further, the nontrivial decisions in digital design are based on
more than one-two valued variable. Thus, if an output is to be completely specified as a
function of two inputs, there are four input combinations that must be considered. If there
are three inputs, then eight combinations must be considered and from this we see that n
inputs will require 2n combinations to be considered.

A TRUTH-TABLE as suggested is a tabular or graphical technique for listing all possible
combinations of input variables, arguments, or whatever they may be called, in a vertical
order, listing each input combination one row at a time (Table 2.1). When every possible
combination is recorded, each combination can be studied to determine whether the ‘output’
or ‘combined interaction’ of that combination should be ASSERTED or NOT-ASSERTED. Of
course the information used to determine the combined interaction or output must come from
studying arguments of the logic problem. For example

(i) Let we have a TV that operates with a switch. The TV, becomes on or off with the
switch on or off respectively.

Table 2.1(a)
True

H igh ASS ERT ED

Low NO T ASSERTED

I/P
Sw itch

O /P
TV

O ff
O n

0
1

O ff
O n

0
1

Fa lse

(ii) Let we have a TV that operates with two switches. When both the switches are
‘ON’ then only TV becomes ‘ON’ and in all other cases TV is ‘Off ’.

Table 2.1(b)
S.1 S.2 TV
0 0 0 OFF
0 1 0 OFF
1 0 0 OFF
1 1 1 ON

(iii) Let the TV operate with three switches. The condition now is that when at least
two switches are ‘ON’ the TV becomes ‘ON’ and in all other conditions ‘TV’ is ‘OFF’.

Table 2.1(c)

S.1 S.2 S.3 TV
0 0 0 0 OFF
0 1 0 0 OFF
0 1 0 0 OFF
0 1 0 1 ON
1 0 0 0 OFF
1 0 1 1 ON
1 1 0 1 ON
1 1 1 0 OFF

Table 2.1(a) illustrates the use of a one variable T.T. and how the output or combined
interaction is manually listed to the right of each possible combination. Table 2.1(b) and Table
2.1(c) show the standard form for two and three variable truth-tables. In review, what is

Digital Design Fundamentals–Boolean Algebra and Logic Gates 65

suggested here is that after all the input variables have been identified, and all the possible
combinations of these variables have been listed in the truth-table on the left, then each row
should be studied to determine what output or combined interaction is desired for that input
combination. Furhter, note that the input combinations are listed in ascending order, starting
with the binary equivalent of zero. The TRUTH-TABLE also allows us to establish or prove
Boolean identities without detailed mathematical proofs, as will be shown latter.

2.2 AXIOMATIC SYSTEMS AND BOOLEAN ALGEBRA
In chapter 1 we have discussed the AND, OR, and INVERTER functions and stated that

it can be proven that these functions make up a sufficient set to define a two valued Boolean
Algebra. Now we introduce some formal treatment to this two-valued Boolean algebra.

Axiomatic Systems
Axiomatic systems are founded on some fundamental statements reffered to as ‘axioms’

and ‘postulates.’ As you delve deeper into the origin of axioms and postualtes, you find these
to be predicted on a set of undefined objects that are accepted on faith.

Axioms or postulates are statements that make up the framework from which new
systems can be developed. They are the basis from which theorems and the proofs of these
theorems are derived. For example, proofs are justified on the basis of a more primitive proof.
Thus, we use the statement—‘From this we justify this’. Again, we find a process that is based
on some point for which there exist no furhter primitive proofs. Hence, we need a starting
point and that starting point is a set of axioms or postulates.

Axioms are formulated by combining intelligence and empirical evidence and should have
some basic properties. These are:

1. They are statements about a set of undefined objects.
2. They must be consistent, that is, they must not be self-contradictory.
3. They should be simple but useful, that is, not lengthy or complex.
4. They should be independent, that is, these statements should not be interdependent.

The study of axiomatic systems related to logic motivated the creation of the set of
postulates known as the ‘HUNTINGTON POSTULATES’. E.V. Huntigton (1904) formulated
this set of postulates that have the basic properties described desirable, consistant, simple and
independent. These postulates as set forth can be used to evaluate proposed systems and
those systems that meet the criteria set forth by these posutlates become known as Huntigton
System. Further, once a proposed system meets the criteria set forth by the Huntington
Postulates, automatically all theorems and properties related to other Huntigton systems
become immediately applicable to the new system.

Thus, we propose a Boolean algebra and test it with the Huntigton postulates to deter-
mine its structure. We do this so that we can utilize the theorems and properities of other
Huntigton system for a new system that is defined over a set of voltge levels and hardware
operators. Boolean algebra, like other axiomatic systems, is based on several operators de-
fined over a set of undefined elements. A SET is any collection of elements having some
common property; and these elements need not be defined. The set of elements we will be
dealing with is {0, 1}. The 0 and 1, as far as we are concerned, are some special symbols and
have no numerical cannotation whatsoever. They are simply some objects we are going to
make some statements about. An operation (., +) is defined as a rule defining the results of
an operation on two elements of the set. Becuase these operators operate on two elements,
they are commonly reflected to as “binary operators”.

66 Switching Theory

2.2.1 Huntington’s Postulates
1. A set of elements S is closed with respect to an operator if for every pair of elements

in S the operator specifies a unique result (element) which is also in the set S.

or

For the operator + the result of A + B must be found in S if A and B are in S; and for
the operator the result of A. B must also be found in S if A and B are elements in S.

2(a) There exists an element 0 in S such that for every A in S, A + 0 = A.
2(b) There exists an element 1 in S such that for every A in S, A.1 = A.
3(a) A + B = B + A
3(b) A. B = B . A
4(a) A + (B . C) = (A + B) . (A + C)
4(b) A . (B + C) = (A . B) + (A . C)

5. For every element A in S, there exists an element A′ such that A.A = 0 and A + A = 1
6. There exist at least two elements A and B in S such that A is not equivalent to B.

Therefore, if we propose the following two values. Boolean algebra system, that is, if we
define the set S = {0, 1} and prescribe the rules for ., + and INVERTER as follows:

Rules for “ . ” Rules for “+”
. 0 1 A B A.B + 0 1 A B A + B
0 0 0 or 0 0 0 0 0 1 or 0 0 0
1 0 1 0 1 0 1 1 1 0 1 1

1 0 0 1 0 1
1 1 1 1 1 1

INVERT FUNCTION (COMPLEMENT)

A A′
0 1

1 0

and test our system with postulates, we find
1. Closure is obvious—no results other than the 0 and 1 are defined.
2. From the tables (a) 0 + 0 = 0 0 + 1 = 1 + 0 = 1

(b) 1.1 = 1 1.0 = 0.1 = 0
3. The commutative laws are obvious by the symmetry of the operator tables.

4(a) The distributive law can be proven by a TRUTH-TABLE.

A B C B + C A.(B + C) A.B A.C (A.B) + (A.C)

0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

UVW
 Commutative Law

UVW
 Distributive Law

Digital Design Fundamentals–Boolean Algebra and Logic Gates 67

4(b) Can be shown by a similar table.

5. From the INVERTER function table

(COMPLEMENT)

1.1 = 1.0 = 0, 0.0 = 0.1 = 0

1 + 1 = 1 + 0 = 1, 0 + 0 = 0 + 1 = 1

6. It is obvious that the set S = {0, 1} fulfills the minimum requirements of having at
least two elements where 0 1.≠

From this study the following postulates can be listed below:

Table 2.2.1

Postulate 2 (a) A + 0 = A (b) A.1 = A Intersection Law

Postulate 3 (a) A + B = B + A (b) A.B = B.A Commutating Law

Postulate 4 (a) A(B + C) = AB + AC (b) A + BC = (A + B) (A + C) Distributive Law

Postulate 5 (a) A + A = 1 (b) A.A′ = 0 Complements Law

We have just established a two valued Boolean algebra having a set of two elements, 1
and 0, two binary operators with operation rules equivalent to the AND or OR operations, and
a complement operator equivalent to the NOT operator. Thus, Boolean algebra has been
defined in a formal mathematical manner and has been shown to be equivalent to the binary
logic presented in Chapter 1. The presentation is helpful in understanding the application of
Boolean algebra in gate type circuits. The formal presentation is necessary for developing the
theorems and properties of the algebraic system.

2.2.2 Basic Theorems and Properties of Boolean Algebra
Duality. The Huntington postulates have been listed in pairs and designated by part (a)

and (b) in Table 2.2.2. One part may be obtained from other if the binary operators (+ and .)
and identity elements (0 and 1) are interchanged. This important property of Boolean algebra
is called the duality principle. It states that every algebraic expression deducible from the
postulates of Boolean algebra remain valid if the operators and identity elements are inter-
changed. In a two valued Boolean algebra, the identity elements and the elements of the set
are same: 1 and 0.

Basic Theorems. Table 2.2.2 lists six theorems of Boolean algebra. The theorems, like the
postulates, are listed in pairs; each relation is the dual of the one paired with it. The
postulates are basic axioms of the algebraic structure and need no proof. The theorems must
be proven from the postulates.

Table 2.2.2 Theorems of Boolean Algebra

Theorem

1. (a) A + A = A (b) A.A = A Tautology Law

2. (a) A + 1 = 1 (b) A.0 = 0 Union Law

3. (A′)′ = A Involution Law

4. (a) A + (B + C) = (A + B) + C (b) A.(B.C) = (A.B).C Associative Law

5. (a) (A + B)′ = A′B′ (b) (A.B)′ = A′ + B′ De Morgan’s Law

68 Switching Theory

6. (a) A + AB = A (b) A(A + B) = A Absorption Law

7. (a) A + A′B = A + B (b) A(A′ + B) = AB

8. (a) AB + AB′ = A (b) (A + B) (A + B′) = A Logical adjancy

9. (a) AB + A′C + BC = AB + A′C (b) (A + B) (A′ + C) (B + C) = (A + B)

Consensus Law

The proofs of the theorem are presented below. At the right is listed the number of
postulate which justifies each step of proof.

Theorem 1(a) A + A = A
A + A = (A + A).1 by postulate 2(b)

= (A + A) (A + A′) 5(a)
= A + AA′ 4(b)
= A + 0 5(b)
= A 2(a)

Theorem 1(b) A.A = A.
A.A = A.A + 0 by postulate 2(a)

= A.A + A.A′ 5(b)
= A(A + A′) 4(a)
= A.1 5(a)
= A 2(b)

Note that theorem 1(b) is the dual of theorem 1(a) and that each step the proof in part
(b) is the dual of part (a). Any dual theorem can be similarly derived from the proof of its
corresponding pair.

Theorem 2(a) A + A = 1

A + 1 = 1.(A + 1) by postulate 2(b)

= (A + A′) (A + 1) 5(a)

= A + A′.1 4(b)

= A + A′ 2(b)

= 1 5(a)

Theorem 2(b) A.0 = 0 by duality.

Theorem 3. (A′)′ = A From postulate 5, we have

A + A′ = 1 and A.A′ = 0, which defines the complement of A. The complement of A′ is
A and is also (A′)′. Therefore, since the complement is unique, we have that (A′)′ = A.

Theorem 4(a) A + (B + C) = (A + B) + C

We can prove this by perfect induction method shown in table below:

A B C (B + C) A + (B + C) (A + B) (A + B) + C

0 0 0 0 0 0 0

0 0 1 1 1 0 1

0 1 0 1 1 1 1

0 1 1 1 1 1 1

(Contd.)...

Digital Design Fundamentals–Boolean Algebra and Logic Gates 69

A B C (B + C) A + (B + C) (A + B) (A + B) + C

1 0 0 0 1 1 1

1 0 1 1 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

We can observe that A + (B + C) = (A + B) + C

*Theorem 4(b)—can be proved in similar fashion.

*Theorem 5(a) and 5(b)—can also be proved by perfect induction method.

Theorem 6(a) A + AB = A

A + AB = A (1 + B)

= A (1)

= A

6(b) A.(A + B) = A By duality.

Theorem 7(a) A + A′B = A + B

A + A′B = A.1 + A′B
= A (B + B′) + A′B
= AB + AB′ + A′B
= AB + AB + AB′ + A′B
= A(B + B′) + B(A + A′)
= A + B.

7(b) A.(A′ + B) = A.B By duality.

Theorem 8(a) AB + AB′ = A

AB + AB′ = A(B +B′)
= A

8(b) (A + B) . (A + B′) = A By duality.
Theorem 9(a) AB + A′C + BC = AB + A′C

AB + A′C + BC = AB + A′C + BC(A + A′)
= AB + A′C + ABC + A′BC
= AB (1 + C) + A′C (1 + B)
= AB + A′C

9(b) (A + B) (A′ + C) (B + C) = (A + B) (A′ + C) By duality.

2.3 BOOLEAN FUNCTIONS
A binary variable can take the value of 0 or 1. A Boolean function is an expression formed

with binary variable, the two binary operators OR and AND, the unary operator NOT,
parantheses and an equal sign. For a given value of the variables, the function can be either
0 or 1. Consider, for example, the Boolean function

F1 = xy′z

*The proof of 4(b), 5(a) and 5(b) is left as an exercise for the reader.

70 Switching Theory

The function F is equal to 1 when x = 1, y = 0 and z = 1; otherwise F = 0. This is an example
of a Boolean function represented as an algebraic expression. A Boolean function may also be
represented in a truth table. To represent a function in a truth table, we need a list of the 2n

combinations of 1’s and 0’s of n binary variables, and a column showing the combinations for
which the function is equal to 1 or 0 as discussed previously. As shown in Table 2.3, there
are eight possible distinct combination for assigning bits to three variables. The table shows
that the function F is euqal to 1 only when x = 1, y = 0 and z = 1 and equal to 0 otherwise.

Consider now the function

F2 = x′y′z + x′yz + xy′
F2 = 1 if x = 0, y = 0, z = 1 or

x = 0, y = 1, z = 1 or

x = 1, y = 0, z = 0 or

x = 1, y = 0, z = 1

F2 = 0, otherwise.

Table 2.3

x y z F1 F2 F3

0 0 0 0 0 0

0 0 1 0 1 1

0 1 0 0 0 0

0 1 1 0 1 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 0 0

1 1 1 0 0 0

The number of rows in the table is 2n, where n is the number of binary variables in the
function.

The question now arises, Is an algebraic expression of a given Boolean function unique?
Or, is it possible to find two algebraic expressions that specify the same function? The answer
is yes. Consider for example a third function.

F3 = xy′ + x′z
F3 = 1 if x = 1, y = 0, z = 0 or

x = 1, y = 0, z = 1 or
x = 0, y = 0, z = 1 or
x = 0, y = 1, z = 1

F3 = 0, otherwise.

From table, we find that F3 is same as F2 since both have identical 1’s and 0’s for each
combination of values of the three binary variables. In general, two functions of n binary
variables are said to be equal if they have the same value for all possible 2n combinations of
the n variables.

As a matter of fact, the manipulation of Boolean algebra is applied mostly to the problem
of finding simpler expressions for the same function.

Digital Design Fundamentals–Boolean Algebra and Logic Gates 71

2.3.1 Transformation of Boolean Function into Logic Diagram
A Boolean function may be transformed from an algebraic expresion into a logic diagram

composed of AND, OR and NOT gates. Now we shall implement the three functions discussed
above as shown in Fig. 2.3.1.

• Here we are using inverters (NOT gates) for complementing a single variable. In
general however, it is assumed that we have both the normal and complement
forms available.

• There is an AND gate for each product term in the expression.

• An OR gate is used to combine (seen) two or more terms.

F1
x
z

y

x

z
y

x

z

y

F2

F3

()a

()b

()c

Fig. 2.3.1 (a, b, c)

From the diagrams, it is obvious that the implementation of F3 requires fewer gates and
fewer inputs than F2. Since F3 and F2 are equal Boolean functions, it is more economical to
implement F3 form than the F2 form. To find simpler circuits, we must know how to manipu-
late Boolean functions to obtain equal and simpler expression. These simplification (or mini-
mization) techniques will be related in detail in next chapter.

2.3.2 Complement of a Function
The complement of a function F is F′ and is obtained from an interchange of 0’s for 1’s

... and 1’s for 0’s in the value of F. The complement of a function may be derived algebraically
through De Morgan’s theorem. De Morgan’s theorem can be extended to three or more
variables. The three-variable form of the De Morgan’s theorem is derived below:

(A + B + C)′ = (A + X)′ Let B + C = X

= A′X′ by theorem 5(a)

= A′.(B + C)′ substituting B + C = X

= A′.(B′C′) theorem 5(a)

= A′B′C′ theorem 4(a)

72 Switching Theory

This theorem can be generalized as

(A + B + C + D + ... F)′ = A′B′C′D′....F′
and its DUAL

(ABCD F)′ = A′ + B′ + C′ + D′ + ... + F′
The generalized form of De Morgan’s theorem states that the complement of a function

is obtained by interchaning AND and OR operators and complementing each literal.

Example. Determine the complements of the following function:

F1 = AB′ + C′D
Solution. F1 = AB′ + C′D

F1′ = (AB′ + C′D)′
= (AB′)′ . (C′D)′
= (A′ + B) . (C + D′)

2.4 REPRESENTATION OF BOOLEAN FUNCTIONS
Boolean functions (logical functions) are generally expressed in terms of logical vari-

ables. Values taken on by the logical functions and logical variables are in the binary form.
Any logical variable can take on only one of the two values 0 and 1 or any logical variable
(binary variable) may appear either in its normal form (A) or in its complemented form (A′).
As we will see shortly latter that an arbitrary logic function can be expressed in the
following forms:

(i) Sum of Products (SOP)

(ii) Product of Sums (POS)

Product Term
The AND function is reffered to as product. The logical product of several variables on

which a function depends is considered to be a product term. The variables in a product term
can appear either in complemented or uncomplemented (normal) form. For example AB′C is
a product form.

Sum Term
The OR function is generally used to refer a sum. The logical sum of several variables

on which a function depends is considered to be a sum term. Variables in a sum term also
can appear either in normal or complemented form. For example A + B + C′, is a sum
term.

Sum of Products (SOP)
The logic sum of two or more product terms is called a ‘sum of product’ expression. It

is basically on OR operation of AND operated variables such as F = A′B + B′C + A′BC.

Product of Sums (POS)
The logical product of two or more sum terms is called a ‘product of sum’ expression. It is

basically an AND operation of OR operated variables such as F = (A′ + B). (B′ + C) . (A′ + B + C).

Digital Design Fundamentals–Boolean Algebra and Logic Gates 73

2.4.1 Minterm and Maxterm Realization
Consider two binary variables A and B combined with an AND operation. Since each

variable may appear in either form (normal or complemented), there are four combinations,
that are possible—AB, A′B, AB′, A′B′.

Each of these four AND terms represent one of the four distinct combinations and is
called a minterm, or a standard product or fundamental product.

Now consider three variable—A, B and C. For a three variable function there are 8
minterms as shown in Table 2.4.1. (Since there are 8 combinations possible). The binary
numbers from 0 to 7 are listed under three varibles. Each minterm is obtained from an AND
term of the three variables, with each variable being primed (complemented form) if the
corresponding bit of the binary number is a 0 and unprimed (normal form) if a 1. The
symbol is mj, where j denotes the decimal equivalent of the binary number of the minterm
disignated.

In a similar manner, n variables can be combined to form 2n minterms. The 2n different
minterms may be determined by a method similar to the one shown in table for three variables.

Similarly n variables forming an OR term, with each variable being primed or unprimed,
provide 2n possible combinations, called maxterms or standard sums.

Each maxterm is obtained from an OR term of the n variables, with each variable being
unprimed if the corresponding bit is a 0 and primed if a 1.

It is intersting to note that each maxterm is the complement of its corresponding
minterm and vice versa.

Now we have reached to a level where we are able to understand two very important
properties of Boolean algebra through an example. The example is same as we have already
discussed in Section (2.1) Truth Table.

Table 2.4.1 Minterm and Maxterm for three binary variables

MINTERMS MAXTERMS

Decimal Eqt. A B C Term Designation Term Designation

0 0 0 0 A′B′C′ m0 A + B + C M0

1 0 0 1 A′B′C m1 A + B + C′ M1

2 0 1 0 A′BC′ m2 A + B′ + C M2

3 0 1 1 A′BC m3 A + B′ + C′ M3

4 1 0 0 AB′C′ m4 A′ + B + C M4

5 1 0 1 AB′C m5 A′ + B + C′ M5

6 1 1 0 ABC′ m6 A′ + B′ + C M6

7 1 1 1 ABC m7 A′ + B′ + C M7

Let we have a TV that is connected with three switches. TV becomes ‘ON’ only when
atleast two of the three switches are ‘ON’ (or high) and in all other conditions TV is ‘OFF’
(or low).

Let the three switches are represented by three variable A, B and C. The output of TV
is represented by F. Since there are three switches (three variables), there are 8 distinct
combinations possible that is shown in TT.

74 Switching Theory

SWITCHES TV (o/p) HIGH (ON) → 1

A B C F LOW (OFF) → 0.

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

The TV becomes ‘ON’ at four combinations. These are 011, 101, 110 and 111. We can say
that F is determined by expressing the combinations A′BC, ABC′ and ABC. Since each of these
minterms result in F = 1, we should have

F = A′BC + AB′C + ABC′ + ABC

= m3 + m5 + m6 + m7.

This demonstrates an important property of Boolean algebra that ‘Any Boolean function
can be expressed as sum of minterms or as ‘Sum of product’. However, there is no guarantee
that this SOP expression will be a minimal expression. In other words, SOP expressions are
likely to have reduandancies that lead to systems which requires more hardware that is
necessary. This is where the role of theorems and other reduction techniques come into play
as will be shown in next chapter.

As mentioned, any TRUTH-TABLE INPUT/OUTPUT specifications can be expressed in
a SOP expression. To facilitate this a shorthand symbology has been developed to specify such
expressions. This is done by giving each row (MINTERM) in the TRUTH-TABLE a decimal
number that is equivalent to the binary code of that row, and specifying the expression thus:

F = Σ(m3, m5, m6, m7)

which reads: F = the sum-of-products of MINTERMS 3, 5, 6 and 7. This shorthand notation
can be furhter shortend by the following acceptable symbology:

F = Σ(3, 5, 6, 7)

Expression such as these serve as great aids to the simplification process, as shown in
next chapter.

Now, continuing with the same example, consider the complement of Boolean function
that can be read from Truth-table by forming a minterm for each combination that produces
0 in the function and by 0Ring

F ′ = A′B′C′ + A′B′C + A′BC′ + AB′C
Now, if we take the complement of F′, we get F.

⇒ F = (A + B + C) . (A + B + C′) . (A + B′ + C) (A′ + B + C)

= M0 M1 M2 M4

This demonstrates a second important property of the Boolean algebra that ‘Any Boolean
function can be expressed as product-of-maxterms or as product of sums’. The procedure for

Digital Design Fundamentals–Boolean Algebra and Logic Gates 75

obtaining the product of maxterms directly from Truth-table is as; Form a maxterm for
each combination of the variables that produces a 0 in the function, and then form the AND
of all those functions. Output will be equal to F because in case of maxterms 0 is unprimed.

The shortend symbology for POS expressions is as follows—

F = II(M0, M1, M2, M4)

or F = II(0, 1, 2, 4)

Boolean functions expressed as sum of minterms (sum of product terms) SOP or product
of maxterms, (Product of sum terms) POS are said to be in CANONICAL form or STANDARD
form.

2.4.2 Standard Forms
We have seen that for n binary variables, we can obtain 2n distinct mintersms, and that

any Boolean function can be expressed as a sum of minterms or product of maxterms. It is
sometimes convenient to express the Boolean function in one of its standard form (SOP or
POS). If not in this form, it can me made as follows:

1. Sum of Product. First we expand the expression into a sum of AND terms. Each
term is then inspected to see if it contains all the variable. If it misses one or more
variables, it is ANDed with an expression such as A + A′, where A is one of the missing
variables.

Example. Express the Boolean function F = x + y′z in a sum of product (sum of minterms)
form.

Solution. The function has three variables x, y and z. The first term x is missing two
variables; therefore

x = x (y + y′) = xy + xy

This is still missing one variable:

x = xy (z + z′) + xy′ (z + z′)
= xyz + xyz′ + xy′z + xy′z′

The second term y′z is missing one variable:

y′z = y′z (x + x′) = xy′z + x′y′z
Combining all terms, we have

F = x + y′z = xyz + xyz′ + xy′z + xy′z′ + xy′z + x′y′z
But xy′z appears twice, and according to theorem 1 (A + A = A), it is possible to remove

one of them. Rearranging the min terms in ascending order, we have:

F = x′y′z + xy′z′ + xy′z + xyz′ + xyz

= m1 + m4 + m5 + m6 + m7.

⇒ F(x, y, z) = Σ(1, 4, 5, 6, 7)

An alternative method for driving product terms (minterms) is to make a T.T. directly
from function. F = x + y′z from T.T., we can see directly five minterms where the value of
function is equal to 1. Thus,

76 Switching Theory

F(x, y, z) = Σ(1, 4, 5, 6, 7)

x y z F = x + y′z
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

2. Product of Sums. To express the Boolean function as product of sums, it must first
be brought into a form of OR terms. This may be done by using the distributive law A + BC
= (A + B) . (A + C). Then any missing variable A in each OR term is 0Red with AA′.

Example. Express the Boolean function F = AB + A′C in a product of sum (product of
mixterm) form.

Solution. First convert the function into OR terms using distributive law.

F = AB + A′C = (AB + A′) (AB + C)

= (A + A′) (B + A′) (A + C) (B + C)

= (A′ + B) (A + C) (B + C)

The function has three variables A, B and C. Each OR term is missing one variable
therefore:

A′ + B = A′ + B + CC′ = (A′ + B + C) (A′ + B + C′)
A + C = A + C + BB′ = (A + B + C) (A + B′ + C)
B + C = B + C + AA′ = (A + B + C) (A′ + B + C)

Combining all these terms and removing those that appear more than once.
F = (A + B + C) (A + B′ + C) (A′ + B + C) (A′ + B + C′)

M0 M2 M4 M5

⇒ F(x, y, z) = II(0, 2, 4, 5)
An alternative method for deriving sum terms (maxterms) again is to make a TT directly

from function.
F = AB + A′C

From TT, we can see directly four maxterms where the value of function is equal to 0.

Thus, F(A, B, C) = II(0, 2, 4, 5)

A B C F = AB + A′C
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1
(Contd.)...

Digital Design Fundamentals–Boolean Algebra and Logic Gates 77

A B C F = AB + A′C
1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

2.4.3 Conversion between Standard Forms
Consider the table shown in section 2.4.1(b) to help you establish the relationship be-

tween the MAXTERM and MINTERM numbers.

From table we see that mj = M j

or mj = mj

An interesting point can be made in relationship between MAXTERM lists and MINTERMS
lists. The subscript number of the terms in the MAXTERM list correspond to the same
subscript numbers for MINTERMS that are not included in the MINTERM list. From this we
can say the following:

Give : II (Set of MAXTERM numbers)

We know that the function derived from this list will yield precisely the same result as
the following:

Σ(set of MINTERMS numbers that are not included in the MAXTERM list)

For example,

Given, F(A, B, C) = II(0, 1, 4, 6)

We know immediately that

F(A, B, C) = Σ(2, 3, 5, 7)

2.5 LOGIC GATES

Introduction
We have seen that the foundation of logic design is seated in a well defined axiomatic

system called Boolean algebra, which was shown to be what is known as a “Huntington system”.
In this axiomatic system the definition of AND and OR operators or functions was set forth and
these were found to be well defined operators having certain properties that allow us to extend
their definition to Hardware applications. These AND and OR operators, sometimes reffered to
as connectives, actually suggest a function that can be emulated by some H/w logic device. The
logic Hardware devices just mentioned are commonly reffered to as “gates”.

Keep in mind that the usage of “gate” refers to an actual piece of Hardware where
“function” or “operation” refers to a logic operator AND. On the other hand, when we refer
to a “gate” we are reffering directly to a piece of hardware called a gate. The main point to
remember is ‘Don’t confuse gates with logic operators’.

2.5.1 Positive and Negative Logic Designation
The binary signals at the inputs or outputs of any gate can have one of the two values except

during transistion. One signal levels represents logic 1 and the other logic 0. Since two signal
values are assigned two to logic values, there exist two different assignments of signals to logic.

78 Switching Theory

Logics 1 and 0 are generally represented by different voltage levels. Consider the two
values of a binary signal as shown in Fig. 2.5.1. One value must be higher than the other
since the two values must be different in order to distinguish between them. We designate
the higher voltage level by H and lower voltage level by L. There are two choices for logic
values assignment. Choosing the high-level (H) to represent logic 1 as shown in (a) defines
a positive logic system. Choosing the low level L to represent logic-1 as shown in (b), defines
a negative logic system.

Log ic
value

Signal
value

Log ic
value

Signal
value

1

0

H

L

0

1

H

L

(a) Positive logic (b) Negative logic

Fig. 2.5.1

The terms positive and negative are somewhat misleading since both signal values may
be positive or both may be negative. Therefore, it is not signal polarity that determines the
type of logic, but rather the assignment of logic values according to the relative amplitudes
of the signals.

The effect of changing from one logic designation to the other equivalent to complement-
ing the logic function because of the principle of duality of Boolean algebra.

2.5.2 Gate Definition
A ‘gate’ is defined as a multi-input (> 2) hardware device that has a two-level output. The

output level (1–H/0–L) of the gate is a strict and repeatable function of the two-level
(1–H/0–L) combinations applied to its inputs. Fig. 2.5.2 shows a general model of a gate.

n inpu ts, each of
wh ich can take on
one of two levels
(H IG H/LO W)

Two leve l outpu t tha t
is a s trict function of
two-level inpu t
com bina tions

G ate
(Hardware)

Fig. 2.5.2 The general model of a gate.

The term “logic” is usually used to refer to a decision making process. A logic gate, then,
is a circuit that can decide to say yes or no at the output based upon inputs.

We apply voltage as the input to any gate, therefore the Boolean (logic) 0 and 1 do not
represent actual number but instead represent the state of a voltage variable or what is called
its logic level. Sometimes logic 0 and logic 1 may be called as shown in table below:

Table 2.5.2

Logic 0 Logic 1

False True

Off On

Low High

No Yes

Open switch Close switch

Digital Design Fundamentals–Boolean Algebra and Logic Gates 79

2.5.3 The AND Gate
The AND gate is sometimes called the “all or nothing gate”. To show the AND gate we

use the logic symbol in Fig. 2.5.3(a). This is the standard symbol to memorize and use from
now on for AND gates.

Y ou tpu t
A

B
Inpu ts

A

B

B ASW ITCH ES

INP UTS

Y

O UTP UT

()a

()b

Fig. 2.5.3 (a) AND Gate logic symbol. (b) Practical AND gate circuit.

Now, let us consider Fig. 2.5.3(b). The AND gate in this figure is connnected to input
switches A and B. The output indicator is an LED. If a low voltage (Ground, GND) appears
at inputs, A and B, then the output LED is not bit. This situation is illustrated in table ().
Line 1 indicates that if the inputs are binary 0 and 0, then the output will be binary 0. Notice
that only binary 1s at both A and B will produce a binary 1 at the output.

Table 2.5.3 AND Truth Table

INPUTS OUTPUTS

A B Y

Switch Binary Switch Binary Light Binary
Voltage Voltage

Low 0 Low 0 No 0

Low 0 High 1 No 0

High 1 Low 0 No 0

High 1 High 1 Yes 1

It is a +5V compared to GND appearing at
A, B, or Y that is called a binary 1 or a HIGH
voltage. A binary 0, or Low voltage, is defined
as a GND voltage (near 0V compared to GND)
appearing at A, B or Y. We are using positive
logic because it takes a positive +5V to produce
what we call a binary 1.

The truth table is said to discribe the AND
function. The unique output from the AND gate
is a HIGH only when all inputs are HIGH.

Fig. 2.5.3 (c) shows the ways to express
that input A is ANDed with input B to produce
output Y.

Boolean
Expression

Log ic
Sym bol

Tru th
Tab le

A

B
Y

AND Sym bol

A.B = Y
↑

A
0
0
1
1

B
0
1
0
1

Y
0
0
0
1

Fig. 2.5.3 (c)

80 Switching Theory

Pulsed Operation
In many applications, the inputs to a gate may be voltage that change with time between

the two logic levels and are called as pulsed waveforms. In studying the pulsed operation of
an AND gate, we consider the inputs with respect to each other in order to determine the
output level at any given time. Following example illustrates this operation:

Example. Determine the output Y from the AND gate for the given input waveform
shown in Fig. 2.5.3(d).

A

B

0 0 1 1

t1 t2 t3 t4

INP UTS

Y ?→

Fig. 2.5.3 (d)

Solution. The output of an AND gate is determined by realizing that it will be high only
when both inputs are high at the same time. For the inputs the outputs is high only during
t3 period. In remaining times, the outputs is 0 as shown in Fig. 2.5.3(e).

0 0 1 0

t1 t2 t3 t4

O UTP UT Y →

Fig. 2.5.3 (e)

2.5.4 The OR Gate
The OR gate is sometimes called the “any or all gate”. To show the OR gate we use the

logical symbol in Fig. 2.5.4(a).

Y ou tpu t
A

B
INP UTS

A

B

B A SW ITCH ES

INP UTS

Y

O UTP UT

()a

()b

Fig. 2.5.4 (a) OR gate logic symbol. (b) Practical OR gate circuit.

A truth-table for the ‘OR’ gate is shown below according to Fig. 2.5.4(b). The truth-table
lists the switch and light conditions for the OR gate. The unique output from the OR gate
is a LOW only when all inputs are low. The output column in Table (2.5.4) shows that only
the first line generates a 0 while all others are 1.

Digital Design Fundamentals–Boolean Algebra and Logic Gates 81

Table 2.5.4

INPUTS OUTPUTS

A B Y

Switch Binary Switch Binary Light Binary

Low 0 Low 0 No 0

Low 0 High 1 No 0

High 1 Low 0 No 0

High 1 High 1 Yes 1

Fig. 2.5.4(c) shows the ways to express that input A is ORed with input B to produce
output Y.

Boolean
Expression

Log ic
Sym bol

Tru th
Tab le

A

B
Y

O R Sym bo l

A + B = Y

↑

A
0
0
1
1

B
0
1
0
1

Y
0
1
1
1

Fig. 2.5.4 (c)

Example. Determine the output Y from the OR gate for the given input waveform shown
in Fig. 2.5.4(d).

A

B

0 0 1

t1 t2 t3

INP UTS

Y ?→

1 0 1

Fig. 2.5.4 (d)

Solution. The output of an OR gate is determined by realizing that it will be low only
when both inputs are low at the same time. For the inputs the outputs is low only during
period t2. In remaining time output is 1 as shown in Fig. 2.5.4(e).

1 0 1

t1 t2 t3

O UTP UT Y →

Fig. 2.5.4 (e)

82 Switching Theory

We are now familiar with AND and OR gates. At this stage, to illustrate at least in part
how a word statement can be formulated into a mathematical statement (Boolean expression)
and then to hardware network, consider the following example:

Example. Utkarsha will go to school if Anand and Sawan go to school, or Anand and
Ayush go to school.

Solution. → This statement can be symbolized as a Boolean expression as follows:

U IF AAN D S

U = (A . S)

AND
Sym bol

↓

+

O R
Sym bol

↓
 (A . AY)

AND
Sym bol

↓
or

U tkarsha - U
Anand - A
Sawan - S
Ayush - AY

The next step is to transform this Boolean expression into a Hardware network and this
is where AND and OR gates are used.

A

AY

S

U

1

2

A.S

A.AY

3
(A.S) + (A .AY)

The output of gate 1 is high only if both the inputs A and S are high (mean both Anand
and Sawan go to school). This is the first condition for Utkarsha to go to school.

The output of gate 2 is high only if both the inputs A and A.Y are high (means both Anand
and Ayush go to school). This is the second condition for Utkarsha to go to school.

According to example atleast one condition must be fullfilled in order that Utkarsha goes
to school. The output of gate 3 is high when any of the input to gate 3 is high means at least
one condition is fulfilled or both the inputs to gate 3 are high means both the conditions are
fulfilled.

The example also demonstrates that Anand has to go to school in any condition otherwise
Utkarsha will not go to school.

2.5.5 The Inverter and Buffer
Since an Inverter is a single input device, it performs no logic interaction function

between two variables, and to say that merely changing a voltage level constitute a logic
operation would be misleading. Therefore we define it as an Inverter function rather than a
logic operator like the AND and OR operators. The NOT circuit performs the basic logical
function called inversion or complementation. That is why, it is also known as Inverter. The
NOT circuit has only input and one ouput. The purpose of this gate is to give an output that
is not the same as the input. When a HIGH level is applied to an inverter, a LOW level appears
at its output and vice versa. The logic symbol for the inverter is shown in Fig. 2.5.5(a).

If we were to put in a logic at 1 and input
A in Fig. 2.5.5(a), we would get out the oppo-
site, or a logical 0, at output Y.

Y OU TPUTINP UT A

Y = A or A′

Fig. 2.5.5 (a) A logic symbol and Boolean
expression for an inverter.

Digital Design Fundamentals–Boolean Algebra and Logic Gates 83

The truth-table for the inverter is shown in Fig. 2.5.5(b). If the voltage at the input of
the inverter is LOW, then the output voltage is HIGH, if the input voltage is HIGH, then the
output is LOW. We can say that output is always negated. The terms “negated”, “comple-
mented” and “inverted”, then mean the same things.

INPUT OUTPUT

A B

Voltages Binary Voltages Binary

LOW 0 HIGH 1

HIGH 1 LOW 0

Fig. 2.5.6 (b) Truth-table for an inverter.

Now consider the logic diagram as shown in Fig. 2.5.5(c), that shows an arrangement
where input A is run through two inverters. Input A is first inverted to produce a “not A” (A)
and then inverted a second time for “double not A” (A) . In terms of binary digits, we find that

when the input 1 is inverted twice, we end up with original digit. Therefore, we find A = A.

AA

⇒ A = A

INP UT A O UTP UT

Log ical 1
INV ERT

Log ical 0
INV ERT

Log ical 1

Fig. 2.5.5 (c) Effect of double inverting.

The symbol shown in figure is that of a non-inverting buffer/driver. A buffer produces the
transfer function but does not produce any logical operation, since the binary value of the
ouput is equal to the binary value of the input. The circuit is used merely for power ampli-
fication of the signal and is equivalent to two inverters connected in cascade. Fig. 2.5.5(e)
shows the T.T. for the buffer.

AA
O UTP UTINP UT

Fig. 2.5.5 (d) Non-inverting buffer/driver logic symbol.

INPUT OUTPUT

A B

Voltages Binary Voltage Binary

HIGH 1 HIGH 1

LOW 0 LOW 0

Fig. 2.5.5 (e) Truth table for buffer.

Example. Determine the output Y from the inverter for the given input waveform shown
in Fig. (2.5.5 f).

0 1 0 1

t1 t2 t3 t4

INP UTS

1 1 0

t5 t6 t7

Y ?→
A

Fig. 2.5.5 (f)

84 Switching Theory

Solution. The output of an Inverter is determined by realizing that it will be high when
input is low and it will be low when input is high.

1 0 1 0

t1 t2 t3 t4

0 0 1

t5 t6 t7

O UTP UT Y →

2.5.6 Other Gates and Their Functions
The AND, OR, and the inverter are the three basic circuits that make up all digital

circuits. Now, it should prove interesting to examine the other 14 possible ouput specification
(except AND and OR) for an arbitrary two-input gate.

Consider Table (2.5.6.)

Table 2.5.6: Input/Output specifications for the 16 possible outputs derived from
two-input gates

A B GND F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 +V

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

↓ ↓ ↓ ↓ ↓ ↓
N E N A E N
O X A N X O
R O N D N R

R D O
R

Scanning the table for gates that exhibit the Boolean AND and OR operator, we see that
F1 (NOR), F7 (NAND), F8 (AND) and F14 (OR) are the only outputs from gates which manifest
the AND and OR operators. We shall see very shortly that both NAND and NOR gates can
be used as AND and OR gates. Because of this, they are found in integrated circuit form. All
the rest are more complex and deemed unuseful for AND/OR implementation and are not
normally found in gate form, with two exceptions. They are F6 and F9. F6 is the Input/output
specification for a gate called the EXCLUSIVE OR gate and F9 is the specification for the
COINCIDENCE, EQUIVALENCE, or EXNOR gate, also referred to as an EXCLUSIVE NOR.

2.5.7 Universal Gates
NAND and NOR gates. The NAND and NOR gates are widely used and are readily

available from most integrated circuit manufacturers. A major reason for the widespread use
of these gates is that they are both UNIVERSAL gates, universal in the sense that both can
be used for AND operators, OR operators, as well as Inverter. Thus, we see that a complex
digital system can be completely synthesized using only NAND gates or NOR gates.

The NAND Gate. The NAND gate is a NOT AND, or an inverted AND function. The
standard logic symbol for the NAND gate is shown in Fig. (2.5.7a). The little invert bubble
(small circle) on the right end of the symbol means to invert the output of AND.

Digital Design Fundamentals–Boolean Algebra and Logic Gates 85

A

B
Y

A

B

A.B
(A.B)′

INP UTS O UTP UTS

()a ()b

Fig. 2.5.7 (a) NAND gate logic symbol (b) A Boolean expression for the output of a NAND gate.

Figure 2.5.7(b) shows a separate AND gate and inverter being used to produce the NAND
logic function. Also notice that the Boolean expression for the AND gate, (A.B) and the NAND
(A.B)′ are shown on the logic diagram of Fig. 2.5.7(b).

The truth-table for the NAND gate is shown in Fig. 2.5.7(c). The truth-table for the
NAND gate is developed by inverting the output of the AND gate. ‘The unique output from
the NAND gate is a LOW only when all inputs are HIGH.

INPUT OUTPUT

A B AND NAND

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

Fig. 2.5.7 (c) Truth-table for AND and NAND gates.

Fig. 2.5.7 (d) shows the ways to express that input A is NANDed with input B yielding
output Y.

Boolean
Expression

Log ic
Sym bol

Tru th
Tab le

A

B
Y

NO T Symbol

A
0
0
1
1

B
0
1
0
1

Y
1
1
1
0

A . B = Y

AND Symbol

or AB = Y

or (AB) = Y′

Fig. 2.5.7 (d)

Example. Determine the output Y from the NAND gate from the given input waveform
shown in Fig. 2.6.7 (e).

A

B

0 1 0 1

t1 t2 t3 t4

INP UTS

Y

0 1 0 0

O UTP UT

?

Fig. 2.5.7 (e)

86 Switching Theory

Solution. The output of NAND gate is determined by realizing that it will be low only
when both the inputs are high and in all other conditions it will be high. The ouput Y is
shown in Fig. 2.5.7(f).

1 0 1 1

t1 t2 t3 t4
O UTP UT Y →

Fig. 2.5.7 (f)

The NAND gate as a UNIVERSAL Gate

The chart in Fig. 2.5.7(g) shows how would you wire NAND gates to create any of the
other basic logic functions. The logic function to be performed is listed in the left column of
the table; the customary symbol for that function is listed in the center column. In the right
column, is a symbol diagram of how NAND gates would be wired to perform the logic
function.

Log ic
Function

Sym bo l C ircu it us ing NAND gates only

Inverte r

AND

O R

A

B

A A ′

A.B

A

B
A + B

A
A ′

A

B A.B

A

B
A + B

Fig. 2.5.7 (g)

The NOR gate. The NOR gate is actually a NOT OR gate or an inverted OR function.
The standard logic symbol for the NOR gate is shown in Fig. 2.5.7(h)

A

B
Y

A

B

A + B
(A + B)′

INP UTS O UTP UTS

(h) (i)

Fig. 2.5.7 (h) NOR gate logic symbol (i) Boolean expression for the output of NOR gate.

Note that the NOR symbol is an OR symbol with a small invert bubble on the right side.
The NOR function is being performed by an OR gate and an inverter in Fig. 2.5.7(i). The
Boolean function for the OR function is shown (A + B), the Boolean expression for the final
NOR function is (A + B).

The truth-table for the NOR gate is shown in Fig. 2.5.7(j). Notice that the NOR gate
truth table is just the complement of the output of the OR gate. The unique output from the
NOR gate is a HIGH only when all inputs are LOW.

Digital Design Fundamentals–Boolean Algebra and Logic Gates 87

INPUTS OUTPUTS

A B OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

Fig. 2.5.7 (j) Truth-table for OR and NOR gates.

Figure 2.5.7(k) shows the ways to express that input A is ORed with input B yielding
output Y.

Boolean
Expression

Log ic
Sym bol

Tru th
Tab le

A

B
Y

NO T Symbol

A
0
0
1
1

B
0
1
0
1

Y
1
0
0
0

A + B = Y

O R Sym bo l

o r (A + B) = Y′

Fig. 2.5.7 (k)

Example. Determine the output Y from the NOR gate from the given input waveform
shown in Fig. 2.5.7(l).

A

B

0 1 0 1

t1 t2 t3 t4

INP UTS

Y

0 1 0 0

O UTP UT

?

Fig. 2.5.7 (l)

Solution. The output of NOR gate is determined by realizing that it will be HIGH only
when both the inputs are LOW and in all other conditions it will be high. The output Y is
shown in Fig. 2.5.7(m).

1 0 1 0

t1 t2 t3 t4
O UTP UT Y →

Fig. 2.5.7 (m)

88 Switching Theory

The NOR gate as a UNIVERSAL gate.

The chart in Fig. 2.5.7(n) shows how would your wire NOR gates to create any of the
other basic logic functions.

Log ic
Function

Sym bo l C ircu it us ing NO R gates on ly

Inverte r

AND

O R

A

B

A A ′

A.B

A

B
A + B

A
A ′

A

B A + B

A

B
A . B

Fig. 2.5.7 (n)

2.5.8 The Exclusive OR Gate
The exclusive OR gate is sometimes referred to as the “Odd but not the even gate”. It

is often shortend as “XOR gate”. The logic diagram is shown in Fig. 2.5.8 (a) with its Boolean
expression. The symbol ⊕ means the terms are XORed together.

A

B
Y = A B
 = AB + A B

 ⊕
′ ′

Fig. 2.5.8 (a)

The truth table for XOR gate is shown in Fig. 2.5.8 (b). Notice that if any but not all the
inputs are 1, then the output will be 1. ‘The unique characteristic of the XOR gates that it
produces a HIGH output only when the odd no. of HIGH inputs are present.’

INPUTS OUTPUTS

A B A ⊕ B = AB′ + A′B
0 0 0

0 1 1

1 0 1

1 1 0

Fig. 2.5.8 (b)

To demonstrate this, Fig. 2.5.8 (c) shows a three input XOR gate logic symbol and the truth
table Fig. 2.5.8 (d). The Boolean expression for a three input XOR gate can be written as

Y = (A ⊕ B) ⊕ C
= (AB′ + A′B) ⊕ C

Now Let X = AB′ + A′B
⇒ We have X ⊕ C

= XC′ + X′C

Digital Design Fundamentals–Boolean Algebra and Logic Gates 89

A

C
Y = A B C ⊕ ⊕B

Fig. 2.5.8 (c)

INPUTS OUTPUTS

A B C Y

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1
Fig. 2.5.8 (d)

Putting the value of X, we get

Y = (AB′ + A′B)C + (AB′ + AB).C

Y = AB′C′ + A′BC′ + A′B′C + ABC

The HIGH outputs are generated only when odd number of HIGH inputs are present (see
T.T.)

‘This is why XOR function is also known as odd function’.

Fig. 2.5.8 (e) shows the ways to express that input A is XORed with input B yielding
output Y.

Boolean
Expression

Log ic
Sym bol

Tru th
Tab le

A

B
Y

A
0
0
1
1

B
0
1
0
1

Y
0
1
1
0

A B = Y⊕
XO R S ym bol

Fig. 2.5.8 (e)

The XOR gate using AND OR-NOT gates.

we know A ⊕ B = AB′ + A′B

90 Switching Theory

A B⊕

A

B

As we know NAND and NOR are universal gates means any logic diagram can be made
using only NAND gates or using only NOR gates.

XOR gate using NAND gates only.

A B⊕

A

B

XOR using NOR gates only. The procedure for implementing any logic function using
only universal gate (only NAND gates or only NOR gates) will be treated in detail in section
2.6.

A B⊕

A

B

Example. Determine the output Y from the XOR gate from the given input waveform
shown in Fig. 2.5.8 (f).

A
B

0 1 1 0

0 0 0 1
Y

0 0 1 1

0

1

0

t1 t2 t3 t4 t5

C
?

Fig. 2.5.8 (f)

Solution. The output XOR gate is determined by realizing that it will be HIGH only
when the odd number of high inputs are present therefore the output Y is high for time
period t2 and t5 as shown in Fig. 2.5.8 (g).

0 1 0 0 1

t1 t2 t3 t4 t5

O UTP UT Y →

Fig. 2.5.8 (g)

Digital Design Fundamentals–Boolean Algebra and Logic Gates 91

2.5.9 The Exclusive NOR gate
The Exclusive NOR gate is sometimes reffered to as the ‘COINCIDENCE’ or ‘EQUIVA-

LENCE’ gate. This is often shortened as ‘XNOR’ gate. The logic diagram is shown in Fig. 2.5.9 (a).
A

B
Y = A B
 = A B + A B

 .
′ ′

Fig. 2.5.9 (a)

Observe that it is the XOR symbol with the added invert bubble on the output side. The
Boolean expression for XNOR is therefore, the invert of XOR function denoted by symbol O. .

AO. B = (A ⊕ B)′
= (AB′ + A′B)′
= (A′ + B) . (A + B′)
= AA′ + A′B′ + AB + BB′
= AB + A′B′.

The truth table for XNOR gate is shown in Fig. 2.5.9 (b).

INPUTS OUTPUTS

A B AO. B = AB + A′B′
0 0 1

0 1 0

1 0 0

1 1 1
Fig. 2.5.9 (b)

Notice that the output of XNOR gate is the complement of XOR truth table.

‘The unique output of the XNOR gate is a LOW only when an odd number of input are HIGH’.
A

C
Y = A B C . .B

Fig. 2.5.9 (c)

INPUTS OUTPUTS

A B C Y

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0
Fig. 2.5.9 (d)

92 Switching Theory

To demonstrate this, Fig. 2.5.9 (c) shows a three input XNOR gate logic symbol and the
truth-table 2.5.9 (d).

Figure 2.5.9 (e) shows the ways to express that input A is XNORed with input B yielding
output Y.

Boolean
Expression

Log ic
Sym bol

Tru th
Tab le

A

B
Y

A
0
0
1
1

B
0
1
0
1

Y
1
0
0
1

A . B = Y

Fig. 2.5.9 (e)

Now at this point, it is left as an exercise for the reader to make XNOR gate using AND-
OR-NOT gates, using NAND gates only and using NOR gates only.

Example. Determine the output Y from the XNOR gate from the given input waveform
shown in Fig. 2.5.9 (f).

0 1 1 0

1 1 1 0
Y

0 0 1 1

0

0

0

t1 t2 t3 t4 t5

?

Fig. 2.5.9 (f)

Solution. The output of XNOR gate is
determined by realizing that it will be HIGH
only when the even-number of high inputs are
present, therefore the output Y is high for time
period t2 and t5 as shown in Fig. 2.5.9 (g).

2.5.10 Extension to Multiple Inputs in Logic Gates
The gates we have studied, except for the inverter and buffer can be extended to have

more than two inputs.

A gate can be extended to have multiple inputs the binary operation it represents is
commutative and associative.

0 1 0 0 1

t1 t2 t3 t4 t5
O UTP UT Y →

Fig. 2.5.9 (g)

Digital Design Fundamentals–Boolean Algebra and Logic Gates 93

The AND and OR operations defined in Boolean algebra, posseses these two properties.

For the NAD function, we have

x.y = y.x Commutative

and x.(yz) = (x.y).z Associative

Similarly for the OR function,

x + y = y + x Commutative

and (x + y) + z = x + (y + z) Associative

It means that the gate inputs can be interchanged and that the AND and OR function
can be extended to the or more variables.

The NAND and NOR operations are commutative but not associative. For example

*(x ↑ y) = (y ↑ x) ⇒ x′ + y′ = y′ + x′ = commutative

But x ↑ (y ↑ z) ≠ (x ↑ y) ↑ z

⇒ [x′.(y.z)′] ≠ [(x.y)′.z)]′
⇒ x′ + yz ≠ xy + z′
Similarly

**(x ↓ y) = (y ↓ x) ⇒ x′y′ = y′x′ → commutative

But x (y ↓ z) ≠ (x ↓ y) ↓ z

⇒ [x + (y + z)′]′ ≠ [(x + y)′ + z]

x′y + x′z ≠ xz′ + yz′
This difficulty can be overcomed by slightly modifying the definition of operation. We

define the multiple NAND (or NOR) gate as complemented AND (or OR) gate.

Thus by this new definition, we have

x ↑ y ↑ z = (xyz)′
x ↓ y ↓ z = (x + y + z)′

The graphic symbol for 3-input NAND and NOR gates is shown.

x
y
z

(x + y + z)′
x
y
z

(xyz)′

(a) Three-input
NAND ga te

(b) Three-input NO R gate

The exclusive–OR and equivalence gates are both commentative and associative and can
be extended to more than two inputs.

The reader is suggested to verify that, both X-OR and X-NOR prosses commutative and
associative property.

* NAND symbol

** NOR symbol

94 Switching Theory

SOLVED EXAMPLES
Example 1. Give the concluding statement of all the logic gates, we have studied in this

chapter.

Solution. AND: The output is HIGH only when all the inputs are HIGH, otherwise
output is LOW.

OR: The output is LOW only when all the inputs are LOW, otherwise output is HIGH.

NOT: The output is complement of input.

NAND: The output is LOW only when all the inputs are HIGH, otherwise the output
is HIGH.

NOR: The output is HIGH only when all the inputs are LOW, otherwise output is LOW.

EX-OR: The output is HIGH only when both the inputs are not same, otherwise output
is Low.

OR

The output is HIGH only when odd number of inputs are HIGH, otherwise output is
LOW.

EX-NOR: The output is HIGH only when both the inputs are same, otherwise output
is LOW.

OR

The output is HIGH only when even number of inputs are HIGH, otherwise output is
LOW.

Example 2. Show how an EX-OR gate can be used as NOT gate or inverter.

Solution. The expression for NOT gate is

y = A where y = output and A = input

The expression for EX-OR gate is

y = AB + AB

where A and B are inputs.

In the expression of EX-OR we see that the first term AB
can give the complement of input A, if B = 1 and second term
AB = 0 . So we connect the B input to logic HIGH (i.e., logic 1)
to full fill the requirements above stated. i.e.,

from figure

y = A.1 + A.0

or y = A i.e., complement

Thus above connection acts as inverter or NOT gate.

Example 3. Show, how an AND gate and an OR gate can be marked.

Solution. Masking of gates means disabling the gate. It is the process of connecting a
gate in such a way that the output is not affected by any change in inputs i.e., the output
remains fixed to a logic state irrespective of inputs.

Log ic 1

YA

Fig. Ex. 2: EX-OR Gate
connected as NOT Gate

Digital Design Fundamentals–Boolean Algebra and Logic Gates 95

Y = 0 always

Y = 1 always

Log ic 0

Log ic 1

A
B

A
B

Fig. Ex. 3: Masking of AND gate and OR gate

AND gate can be masked by connecting one of its input to logic LOW (i.e. logic 0) and
Or gate can be marked by connecting one of its input to logic HIGH (i.e. logic 1)

Example 4. Below shown waveforms are
applied at the input of 2-input logic gate.

0

1 1 1 1

0 0

1

1 1

0 0 0

A

B

0

Draw the output waveform if the gate is (a) AND gate (b) OR gate (c) EX-OR gate (d)
NAND gate (e) NOR gate.

Solution. The waveforms can be drawbn be recalling the concluding statements of logic
gates given in earlier examples.

0

1 1 1 1

0 0

1

1 1

0 0 0

A

B

0

O utpu t W aveform s

0

1 1 1

0 0

1 1

0

AND

O R

0

1

0 0

1 1 1

1 11 1 1

0

0

0

1 11 1 1

0

1

0 0

1

0 0

1
00 0 0 0 000

EX-O R

NAND

NO R

96 Switching Theory

Example 5. Show how a 2 input AND gate, OR gate, EX-OR gate and EX-NOR gate can
be made transparent.

Solution. Transparent gate means a gate that passes the input as it is to the output i.e.
the output logic level will be same as the logic level applied at input. Let the two inputs are
A and B and output is y. We will connect the gates in such a way that it gives y = A.

For AND gate we have expression

y = A.B

if B = 1

y = A

So connect input B to logic 1 for OR gate we have

y = A + B

if B = 0

y = A

So connect input B to logic 0 for EX-OR gate we have

y = AB + AB

if B = 0,

then AB = A, and AB = 0

and y = A

Hence connect input B to logic 0 for EX-NOR gate we have

y = AB + AB

if B = 1,

then AB = 0 and AB = A

so y = A

Hence connect input B to logic 1

It we take multiple input logic gates then connecting them as above is called enabling
a gate then connecting them as above is called enabling a gate e.g. if we take three input (A,
B, C) AND gate and connect the input (A, B, C) AND gate and connect the input C to logic
1, then output y = A.B. Thus the gate is enabled.

Example 6. Determine the purpose of below shown digital circuit.

Y1

Y2

Y3

Y0

B

A

Solution. From the figure we see that

y0 = A B = AB + AB⊕
y1 = A.y0
y2 = y0

y3 = B.y0

Y = A

Logic 1

A

B

Fig. Transp-
arent AND gate

Ex. 5 ():a

Y = AA
B

Logic 0
Fig. Ex. 5 (): b Transparent

OR gate

Y = AA
B

Logic 0
Fig. Ex. 5 (): c Transparent

EX-OR gate

Y = AA
B

Logic 1
Fig. Ex. 5 (): d Transparent

EX-NOR gate

Digital Design Fundamentals–Boolean Algebra and Logic Gates 97

Now we draw three truth tables, one for each of the outputs y1, y2, and y3 to determine
the purpose of the circuit.

(i) From the table (i), it is evident that
y1 = 1, only when A = 1 and B = 0.
It means that y1 is HIGH only when
A > B, as shown in third row of
Table (i)

(ii) It is evident from Table (ii) that
y2 = 1 if A = B = 0 and A = B = 1.
Thus y2 goes HIGH only when A =
B–, as shown by first and last row of
Table (ii).

(iii) It is evident from Table (iii) that
y3 = 1 if A = 0 and B = 1. Thus y3
goes HIGH only when A < B (or B >
A), as shown by the second row of
table (iii).

Thus from the above discussion it can be concluded that the given circuit is 1-bit
data comparator. In this circuit when HIGH, y1 indicates A > B, y2 indicate the
equality two datas, and y3 indicates A < B.

2.6 NAND AND NOR IMPLEMENTATION
In Section 2.5.7 we have seen that NAND and NOR are universal gates. Any basic logic

function (AND, OR and NOT) can be implemented using these gates only. Therefore digital
circuits are more frequently constructed with NAND or NOR gates that with AND, OR and
NOT gates. Moreover NAND and NOR gates are easier to fabricate with electronic compo-
nents and are the basic gates used in all IC digital logic families. Because of this prominence,
rules and procedures have been developed for implementation of Boolean functions by using
either NAND gates only or NOR gates only.

2.6.1 Implementation of a Multistage (or Multilevel) Digital Circuit using NAND
Gates Only

To facilitate the implementation using NAND gates only, we first define two graphic
symbols for these gates as follows-shown in Fig. 2.6.1(a) and (b).

(a) The AND-invest symol (b) The invert-OR symbol

x
y
z

F (xyz)′
x
y
z

F = x + y + z′ ′ ′
(xyz)′=

(a) (b)

Fig. 2.6.1 (a) (b)

This symbol we have been This is an OR graphic symbol
difined in Section (2.5). proceded by small circtes in all
It consists of an AND the inputs.
grpahic symbol followed by
a small circle.

A
0
0
1
1

B
0
1
0
1

Y
0
1
1
0

0 Y
0
0
1
0

1

Table (i)

Table (ii)

A
0
0
1
1

B
0
1
0
1

Y
0
1
1
0

0 Y
0
1
0
0

1

Table (iii)

A
0
0
1
1

B
0
1
0
1

Y
0
1
1
0

0 Y
1
0
0
1

1

98 Switching Theory

To obtain a multilevel NAND circuit from a given Boolean function, the procedure is as
follows:

1. From the given Boolean function, draw the logic diagam using basic gates (AND, OR
and NOT). In implementing digital circuit, it is assumed that both normal and invented
inputs are available. (e.g., If x and x′ both are given in function, we can apply then
directly that is there is no need to use an inverter or NOT gate to obtain x′ from x).

2. Convert all AND gates to NAND using AND-invert symbol.

3. Convert all OR gates to NAND using Invert-OR symbol.

4. Since each symbol used for NAND gives inverted output, therefore it is necessary
to check that if we are getting the same value as it was at input. [For example if
the input is in its normal from say x, the output must also be x, not x′ (inverted
or complemented value). Similarly if input is in its complemented form say x′, the
ouput must also be x′, not x (normal value)].

If it is not so, then for every small circle that is not compensated by another small
circle in the same line, insert an inverter (i.e., one input NAND gate) or complement
the input variable.

Now consider a Boolean function to demonstrate the procedure:

Y = A + (B + C′) (D′E + F)

Step 1. We first draw the logic diagram using basic gates shown in Fig. 2.6.1 (c). (It is
assumed that both normal os complemented forms are available i.e., no need of inverter).

Y
A

B ′
C

D ′
E

F
I Leve l II Level III Level IV Level

Fig. 2.6.1 (c)

There are four levels of gating in the circuits.

Step 2 and 3

Y
A

B ′
C

D ′
E

F

Fig. 2.6.1 (d)

Digital Design Fundamentals–Boolean Algebra and Logic Gates 99

Here, we have converted all AND gates to NAND using AND-invert and all OR gates to
NAND using invert OR symbol shown in Fig. 2.6.1 (d).

Step 4. From the above figures obtained from step 2 and 3, it is very clear that only two
inputs D′ and E are emerging in the original forms at the output. Rest i.e., A, B′, C and F
are emerging as the complement of their original form. So we need an inverter after inputs
A, B′, C and F or alternatively we can complement these variables as shown in Fig. 2.6.1 (e).

Y
A

B
C ′

D ′
E

F

Fig. 2.6.1 (e)

Now because both the symbols AND-invert and invert-OR represent a NAND gate, Fig.
2.6.1 (e) can be converted into one symbol diagram shown in Fig. 2.6.1 (f). The two symbols
were taken just for simplicity of implementation.

Y
A ′

B
C ′

D ′
E

F ′

Fig. 2.6.1 (f)

After a sufficient practice, you can directly implement any Boolean function a shown in
Fig. 2.6.1 (f).

2.6.2 Implementation of a Multilevel digital circuit using NOR gates only
We first define two basic graphic symbols for NOR gates as shown in Fig. 2.6.2 (a) and

(b).

(a) The OR-invert symbol (b) The invert-AND symbol

x
y
z

F = (x + y + z)′
x
y
z

F = x y z
(x + y + z)

′
 ′

′ ′
=

(a) Th is is an O R graphic sym bo l
fo llowed by a sma ll c irc le .

(b) Th is is an AND graph ic symbol p roceded
by sm all circles in a ll the inpu ts.

Fig. 2.6.2 (a) (b)

100 Switching Theory

Procedure to obtain a multilevel NOR circuit from a given Boolean function is as follows:

1. Draw the AND-OR logic diagram from the given expression. Assume that both
normal and complemented forms are available.

2. Convert all OR gates to NOR gates using OR-invert symbol.

3. Convert all AND gates to NOR gates using invert-AND symbol.

4. Any small circle that is not complement by another small circle along the same line
needs an inverter (one input NOR gate) or the complementation of input variable.

Consider a Boolean expression to demonstrate the procedure:

Y = (A + B).(C + D) E + (F + G)′ ′ ′

Step 1. We first draw the AND-OR logic diagram shown in Fig. 2.6.2 (c).

A ′
B

C
D ′

E

F

I Leve l II Level III Level IV Level

G ′

Y

Fig. 2.6.2 (c)

There are four levels of gating in the circuit.

Step 2 and 3. Here we have to convert all OR gates to NOR using OR-invert and all
AND gates to NOR using invert AND symbol. This is shown in Fig. 2.6.2(d).

A ′
B

C
D ′

E

F
G ′

Y

Fig. 2.6.2 (d)

Step 4. From Fig. 2.6.2 (d), it is clear that all the input variables are imerging in the
same form at the ouput Y as they were at input. Therefore there is no need of inverter at
inputs or complementing the input variables.

Here again, both symbols OR-invert and invent-AND represent a NOR gate, so the
diagram of Fig. 2.6.2 (d) can be converted into one symble shown in Fig. 2.6.2 (e).

Digital Design Fundamentals–Boolean Algebra and Logic Gates 101

A ′
B

C
D ′

E

F
G ′

(A + B)′′

(C + D)′ ′

Y

Fig. 2.6.2 (e)

2.7 EXERCISES
1. Write Boolean equations for F1 and F2.

A B C F1 A B C F2

0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 1

0 1 0 0 0 1 0 1

0 1 1 0 0 1 1 1

1 0 0 0 1 0 0 0

1 0 1 1 1 0 1 1

1 1 0 0 1 1 0 1

1 1 1 1 1 1 1 0

2. Consider 2-bit binary numbers, say A, B and C, D. A function X is true only when
the two numbers are different construct a truth table for X.

3. Draw truth table and write Boolean expression for the following:

(a) X is a 1 only if A is a ⊥ and B is a ⊥ or if A is 0 and B is a 0.

(b) X is a 0 if any of the three variables A, B and C are 1’s. X is a ⊥ for all other conditions.

4. Prove the following identities by writing the truth tables for both sides:

(a) A.(B + C) = (A.B) + (A.C)

(b) (A.B.C)′ = A′ + B′ + C′
(c) A.(A + B) = A

(d) A + A′B = A + B

5. Prove the following:

(a) (X Y) (X Y) X+ + ′ =
(b) XY X Z YZ XY X Z+ ′ + = + ′
(c) () .X Y X Y+ ′ =
(d) () ()X Y X Z X Y Z+ + = + +

(e) () ()X Y Z X Y Z X Y+ + + + ′ = +

102 Switching Theory

6. Without formally deriving can logic expression, deduct the value of each function
W, X, Y, Z.

A B C W X Y Z

0 0 0 0 1 0 1

0 0 1 0 1 0 0

0 1 0 0 1 0 1

0 1 1 0 1 0 0

1 0 0 0 1 1 1

1 0 1 0 1 1 0

1 1 0 0 1 1 0

1 1 1 0 1 1 0

7. A large room has three doors, A, B and C, each with a light switch that can tura
the room light ON or OFF. Flipping any switch will change the condition of the
light. Assuming that the light switch is off when the switch variables have the
values 0, 0, 0 write a truth table for a function LIGHT that can be used to direct
the behaviour of the light. Derive a logic equation for light.

8. Use DeMorgan’s theorm to complement the following Boolean expression.

(a) Z = Z = (x y w v. .)+

(b) Z = x y w y w v. . ()+ ′ + ′

(c) Z = x y′ + Υ

(d) F = AB + CD)(′′

(e) F = (A + B) (C + D′ ′ ′b g
(f) F = A + B) (C + D)(′ ′b g
(g) F = (ABC) EFG) HIJ) (KLM)′ ′ ′ + ′ ′ ′ ′((b g b g
(h) F = (A + B) C + D) E + F) G + H)′ ′ ′ ′ ′ ′(((b g

9. A certain proposition is true when it is not true that the conditions A and B both
hold. It is also true when conditions A and B both hold but condition C does not.
Is the proposition true when it is not true that conditions B and C both hold? Use
Boolean algebra to justify your answer.

10. Define the following terms:

(a) Connical

(b) Minterm

(c) Mexterm

(d) Sum-of-sums form

(e) Product-of-sum form

(f) Connical sum-of-product

(g) Connical product-of-sums

Digital Design Fundamentals–Boolean Algebra and Logic Gates 103

11. Write the standard SOP and the standard POS form for the truth tables:

(a) x y z F (b) x y z F

0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 0
0 1 1 0 0 1 1 1
1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 1
1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1

12. Convert the following expressions into their respective connical forms:

(a) AC + A BD + ACD′ ′
(b) (A + B +C) (A + D)′

13. Which of the following expressions is in sum of product form? Which is in product
of sums form?

(a) A + (B.D)′
(b) C.D .E + F + D′ ′
(c) (A + B).C

14. Find the connical s-of-p form for the following logic expressions:

(a) W = ABC + BC D′
(b) F = VXW Y + W XYZ′ ′

15. Write down the connical s-of-p form and the p-of-s form for the logic expression
whose TT is each of the following.

(a) x1 y2 z3 Z (b) W X Y Z F
0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 0 1
0 1 1 1 0 0 1 1 0
1 0 0 1 0 1 0 0 1
1 0 1 1 0 1 0 1 0
1 1 0 0 0 1 1 0 1
1 1 1 1 0 1 1 1 1

1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

104 Switching Theory

16. Convert the following expressions to sum-of-product forms:

(a) AB + CD (AB + CD)′

(b) AB (B C + BC)′ ′

(c) A + B AC + (B + C) D′

17. Given a Truth table

(a) Express W1 and W2 as a sum of minterms

(b) Express W1 and W2 as product of minterms

(c) Simplify the sum of minterm expressions for W1 and W2 using Boolean algebra.

18. Draw logic circuits using AND, OR and NOT gates to represent the following:

(a) AB + A B′ ′ (b) AB + A B + A BC′ ′ ′

(c) A + B C + D (B + C)′ (d) A + BC + D (E + F)′ ′ ′

(e) (AB) (CD)′ ′ ′

19. Produce a graphical realization of Inverter, AND, OR and XOR using:

(a) NAND gates

(b) NOR gates

20. Implement the Boolean function

F = AB CD + A BCD + AB C D + A BC D′ ′ ′ ′ ′ ′ ′ ′ with exclusive-OR and AND gates.

21. Draw the logic circuits for the following functions.

22. A warning busser is to sound when the following conditions apply:

(a) Switches A, B, C are on.

(b) Switches A and B are on but switch C is off.

(c) Switches A and C are on but switch B is off.

(d) Switches B and C are on but switch A is off.

Draw a truth table and obtain a Boolean expression for all conditions. Also draw the
logic diagram for it using (i) NAND gates (ii) NOR gates. If the delay of a NAND
gate is 15 ns and that of a NOR gate is 12 ns, which implementation is tester.

23. Obtain the following operations using only NOR gates.

(a) NOT (b) OR (c) AND

24. Obtain the following operations using only NAND gates.

(a) NOT (b) AND (c) OR

25. Find the operation performed for each of the gets shown in figure below, with the
help the truth table.

(a)
A

B
Y (b)

A

B
Y

(c)
A

B
Y (d)

A

B
Y

Digital Design Fundamentals–Boolean Algebra and Logic Gates 105

26. Write the expression for EX-OR operation and obtain

(i) The truth table

(ii) Realize this operation using AND, OR, NOT gates.

(iii) Realize this operation using only NOR gates.

27. Varify that the (i) NAND (ii) NOR operations are commutative but not associate.

28. Varify that the (i) AND (ii) OR (iii) EX-OR operations are commutative as well as
associative.

29. Prove that

(i) A positive logic AND operation is equivalent to a negative logic OR operation
and vice versa.

(ii) A positive logic NAND operation is equivalent to a negative logic NOR operation
and vice versa.

30. Prove the logic equations using the Boolean algebraic (switching algebraic) theorems.

(i) A + AB + AB = A + B

(ii) AB + AB + AB = AB

Varify these equations with truth table approach.

31. Prove De Morgan’s theorems.

32. Using NAND gates produce a graphical realization of

(a) Inverter

(b) AND

(c) OR

(d) XOR

33. Using NOR gates also produce a graphical realization of

(a) Inverter

(b) AND

(c) OR

34. Prove (X + Y) (X + Y′) = X

35. XY + X′Z + YZ = XY + X′Z
36. Prove the following:

37. (a) (A + B)′ = A.B (b) (A + B) (A + C) = A + BC

38. Prove the identifies:

(i) A = (A + B) (A + B)¢

(ii) A + B = (A + B + C) (A + B + C′)
39. Obtain the simplified expressions in s-of-p for the following Boolean functions:

(a) xy x yz x yz+ ′ ′ + ′ ′

(b) ABD + A C D A B + A CD + AB D′ ′ ′ + ′ ′ ′ ′ ′

106 Switching Theory

(c) x z w xy w x y xy′ + ′ ′ + ′ + ′()

(d) F (x y z, ,) (, , ,)= Σ 2 3 6 7

(e) F (A, B, C) (A + D)′

40. Convert the following expressions into their respective Canonical forms

(a) AC + A'BD + ACD'

(b) (A + B + C') (A + D)

41. Write the standard SOP and the standard POS form for the truth tables

(a) (b)

x y z F(x, y, z) x y z F(x, y, z)

0 0 0 1 0 0 0 1

0 0 1 1 0 0 1 0

0 1 0 1 0 1 0 0

0 1 1 0 0 1 1 1

1 0 0 1 1 0 0 1

1 0 1 0 1 0 1 1

1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1

42. Consider 2-bit binary numbers, say A, B and C, D. A function X is true only when
the two numbers are different.

(a) Construct a truth table for X

(b) Construct a four-variable K-Map for X, directly from the word definition of X

(c) Derive a simplified logic expression for X.

43. Show an implementation of the half-adder using NAND gates only.

44. A three-bit message is to be transmitted with an even-parity bit.

(i) Design the logic circuit for the parity generator.

(ii) Design the logic circuit for the parity checker.
45. Implement the Boolean function: F = AB′CD′ + A′BCD′ + AB′C′D + A′BC′D′ with

exclusive-OR and AND gates.
46. Construct a 3-to-8 line decoder.
47. Construct a 3 × 8 multiplexer.
48. Construct a 8 × 3 ROM using a decoder and OR gates.
49. Construct a 16 × 4 ROM using a decoder and OR gates.
50. Determine which of the following diodes below are conducting and which are non

conducting.

Digital Design Fundamentals–Boolean Algebra and Logic Gates 107

R

–5v

D1 D 2

R

–10v

–5v

D2

D1–12v

+5v
R

–5v

51. Determine which transistors are ON are which are OFF.

–5v

+5v –10v

–15v

+10v

–2v

–6v

52. Construct voltage and logic truth tables for the circuits shown below. Determine

A

(i)
C

B

D 1

D 2

D 3

R
1 = +5v
0 = –5v

–10v

(i)

A O utpu t

C

B

D 1

D 2

D 3

R

1 = 0v
0 = –5v

+5v

(ii)

the logic operation performed by each. Assume ideal diodes i.e., –neglect the voltage
drop across each diode when it is forward biased.

53. Draw the logic circuits for the following functions:

(a) B.(A.C) + D + E′ ′

(b) (A + B) C + D′ .

(c) (A + B).(C + D)′

54. Prove the following identities by writing the truth tables for both sides.

(a) A.(B + C) == (A.B) + (A.C)

(b) (A.B.C)′ == A′ + B′ + C′

108 Switching Theory

(c) A.(A + B) == A

(d) A + A′.B == A + B

55. A warningbuzzer is to sound when the following conditions apply:

• Switches A, B, C are on.

• Switches A and B are on but switch c is off.

• Switches A and C are on but switch B is off.

• Switches C and B are on but switch A is off.

Draw a truth table for this situation and obtain a Boolean expression for it. Minimize
this expression and draw a logic diagram for it using only (a) NAND (b) NOR gates.
If the delay of a NAND gate is 15ns and that of a NOR gate is 12ns, which
implementation is faster.

56. Which of the following expressions is in sum of products form? Which is in product
of sums form ?

(a) A.+(B.D)′
(b) C.D′.E + F′ + D

(c) (A + B).C

57. Without formally deriving an logic expressions, deduce the value of each function
W, X, Y and Z.

A B C W X Y Z

0 0 0 0 1 0 1

0 0 1 0 1 0 0

0 1 0 0 1 0 1

0 1 1 0 1 0 0

1 0 0 0 1 1 1

1 0 1 0 1 1 0

1 1 0 0 1 1 1

1 1 1 0 1 1 0

58. Define the following terms:

(a) Canonical

(b) Minterm

(c) Maxterm

(d) Sum-of-products form

(e) Product-of-sum form

(f) Canonical sum-of-products

(g) Canonical product-of-sums

59. An audio (beeper) is to be activated when the key has been removed from the
ignition of a car and the headlights are left on. The signal is also to be activated
if the key is in the ignition lock and the driver’s door is opened. A 1 level is
produced when the headlight switch is on. A 1 level is also produced from the

Digital Design Fundamentals–Boolean Algebra and Logic Gates 109

ignition lock when the key is in the lock, and a 1 level is available from the driver’s
door when it is open. Write the Boolean equation and truth table for this problem.

60. A car has two seat switches to detect the presence of a passenger and two seat belt
switches to detect fastened seat belts. Each switch produces a 1 output when
activated. A signal light is to flash when the ignition when the ignition is switched
on any passenger present without his or her seat belt fastened. Design a suitable
logic circuit.

61. Draw logic diagrams for the simplified expressions found in Question 37 using.

• NAND gates only.

• NOR gates only.

Assume both A and A′, B and B′ .. etc. are available as inputs.

62. You are installing an alarm bell to help protect a room at a museum form
unauthorized entry. Sensor devices provide the following logic signals:

ARMED = the control system is active

DOOR = the room door is closed

OPEN = the museum is open to the public

MOTION = There is motion in the room

Devise a sensible logic expression for ringing the alarm bell.

63. A large room has three doors, A, B and C, each with a light switch that can turn the
room light ON or OFF. Flipping any switch will change the condition of the light.
Assuming that the light switch is off when the switch variables have the values 0,
0, 0 write a truth table for a function LIGHT that can be used to direct the behaviour
of the light. Derive a logic equation for LIGHT. Can you simplify this equation ?

64. Design a combinational circuit that accepts a three-bit number and generates an
output binary number equal to the square of the input number.

65. Design a combinational circuit whose input is a four-bit number and whose output
is the 2’s compliment of the input number.

66. A combinational circuit has four inputs and one output. The output is equal to 1
when (I) all the inputs are equal to 1 or (II) none of the inputs are equal to 1 or
(III) an odd number of inputs are equal to 1.

(i) Obtain the truth table.

(ii) Find the simplified output function in SOP

(iii) Find the simplified output function in POS

(iv) Draw the two logic diagrams.

67. Find the canonical s-of-p form the following logic expressions:

(a) W = ABC + BC′D
(b) F = VXW′Y + W′XYZ

68. A certain proposition is true when it is not true that the conditions A and B both
hold. It is also true when conditions A and B both hold but condition C does not.
Is the proposition true when it is true that conditions B and C both hold ? Use
Boolean algebra to justify your answer.

110 Switching Theory

69. Write down the canonical s-of-p form and the p-of-s form for the logic expression
whose truth table is each of the following.

(I) X1 X2 X3 Z (II) A B C W

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 1 0 0 0 1 0 1

0 1 1 1 0 1 1 0

1 0 0 1 1 0 0 1

1 0 1 1 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1

(III) W X Y Z F

0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 1 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

70. Use Question 5.

(a) Using K-maps, obtain the simplified logic expressions for both s-of-p and p-of-s
for each truth table in the question 5 above.

(b) From the p-of-s expressions, work backwards using a K-map to obtain the
s-of-p canonical expression for each truth table.

71. Apply De-Morgan’s theorems to each expression

(a) A + B (b) AB (c) A + B + C (d) A B C

(e) A (B + C) (f) AB CD+ (g) AB + CD (h) (A + B) + C + D)(

Digital Design Fundamentals–Boolean Algebra and Logic Gates 111

(i) ((ABC) (EFG) HIJ) (KLM)+ (j) A + BC CD BC+ +

(k) ((((A + B) C + D) E + F) G + H)

72. Convert the following expressions to sum-of-products forms:

(a) AB + CD (AB + CD) (b) AB (BC + BC) (c) A + B [AC + (B + C) D]

73. Write a Boolean expression for the following

(a) X is a 1 only if a is a 1 and B is a 1 or if A is a 0 and B is a 0

(b) X is a 0 if any of the three variables A, B and C are 1’s. X is a 1 for all other
conditions.

74. Draw logic circuits using AND, OR and NOT elements to represent the following

(a) AB + AB (b) AB + AB + ABC (c) A + B [C + D(B + C)]

(d) A + BC + D(E + F) (e) (AB) (CD) (f) [(A + B) (C + D)]E + FG

75. Use Duality to derive new Boolean identities from the ones you obtained by
simplification in the previous question.

76. Use De Morgan’s Theorem to complement the following Boolean expressions

(a) z = x y w v.(.)+
(b) z x y w y w v= + +. . .()

x

y

Prove this imlements XOR.

(c) z x y= +
(d) z x y w= + .

(e) z x y w= +().

(f) z x y w= + .

77. Using Boolean Algebra verify that the circuit in figure 1 implements an exclusive
OR (XOR) function

(a) Express z1 and z2 as a sum of minterms

(b) Express z1 and z2 as a product of maxterms

(c) Simplify the sum of the minterm for z1 and z2 using Boolean algebra.

112 Switching Theory

3.0 INTRODUCTION
The minimization of combinational expression is considered to be one of the major steps

in the digital design process. This emphasis on minimization stems from the time when logic
gates were very expensive and required a considerable amount of physical space and power.
However with the advent of Integrated circuits (SSI, MSI, LSI and VLSI) the traditional
minimization process has lessened somewhat, there is still a reasonable degree of correlation
between minimizing gate count and reduced package count.

It is very easy to understand that the complexity of logical implementation of a Boolean
function is directly related to the complexity of algebraic expression from which it is imple-
mented.

Although the truth table representation of a Boolean function is unique, but when
expressed algebraically, it can appear in many different forms.

Because of the reason mentioned above, the objective of this chapter is to develop an
understanding of how modern reduction techniques have evolved from the time consuming
mathematical approach (Theorem reduction) to quick graphical techniques called ‘mapping’
and ‘tabular method’ for large number of variable in the combinational expression.

3.1 MINIMIZATION USING POSTULATES AND THEOREM OF BOOLEAN ALGEBRA
The keys to Boolean minimization lie in the theorems introduced in Chapter 2. Section

2.3.2. The ones of major interest are theorem member 6, 7 and 8.

Then, 6 (a) A + AB = A (b) A (A + B) = A Absorption

7 (a) A + A′B = A + B (b) A (A′ + B) = AB

8 (a) AB + AB′ = A (b) (A + B) (A + B′) = A Logic Adjacency

Theorem 6 and 7 have special significance when applied to expression in standard form,
whereas theorem 8 is of particular importance in simplifying canonical form expression.

— Theorem 6 has a wood statements—If a smaller term or expression is formed entirely
in a larger term, then the larger term is superfluous.

Theorem 6 can be applied only when an expression is in a ‘standard form’, that is, one
that has at least one term which is not a MIN or MAX term.

112

3
CHAPTER

BOOLEAN FUNCTION
MINIMIZATION TECHNIQUES

Boolean Function Minimization Techniques 113

Example 3.1 F = CD + AB′C + ABC′ + BCD

Thm 6 [QA + AB = A]
= CD + AB′C + ABC′

⇒ Select one of the smaller terms and examine the larger terms which contain this
smaller term.

— for application of Theorem 7, the larger terms are scanned looking for of application
the smaller in its complemented form.

Example 3.2 F = AB + BEF + A′CD + B′CD

= AB + BEF + CD (A′ + B′)
= AB + BEF + CD (AB)′

 Thm 7 → Using Demorgans’s
Theorem

= AB + BEF + CD (Q A + A B = AB)′

— Theorem 8 is the basis of our next minimization technique i.e., Karnaugh map
method. It has a word statement—‘If any two terms in a canonical or standard form expres-
sion vary in only one variable, and that variable in one term is the complement of the variable
in the other term then of the variable is superfluous to both terms.

Example 3.3 F = A′B′C′ + A′B′C + ABC′ + AB′C

Thm 8 Thm 8

F = A′B′ + AC

Example 3.4 F = A′B′C′ + AB′C′ + ABC′ + A′B′C

Thm 8
Thm 8

= A′B′ + AC′
By now it should become obvious that another techniques is needed because this tech-

niques backs specific rules to predict each succeeding step in manipulative process.

Therefore, if we could develop some graphical technique whereby the application of
‘Theorem 8’ the logical adjacency theorem is made obvious and where the desired grouping
could be plainly displayed, we would be in mind better position to visualize the proper
application of theorem.

3.2 MINIMIZATION USING KARNAUGH MAP (K-MAP) METHOD
In 1953 Maurice Karnaugh developed K-map in his paper titled ‘The map method for

synthesis of combinational logic circuits.

The map method provides simple straight forward procedure for minimizing Boolean
functions that may be regarded as pictorial form of truth table. K-map orders and displays the

114 Switching Theory

minterms in a geometrical pattern such that the application of the logic adjacency theorem
becomes obvious.

— The K-map is a diagram made up of squares. Each square represents one minterm.

— Since any function can be expressed as a sum of minterms, it follows that a Boolean
function can be recognized from a map by the area enclosed by those squares.
Whose minterms are included in the operation.

— By various patterns, we can derive alternative algebraic expression for the same
operation, from which we can select the simplest one. (One that has minimum
member of literals).

Now lest as start with a two variable K map.

3.2.1 Two and Three Variable K Map
If we examine a two variable truth table, Fig. 3.2.1(a) we can make some general

observations that support the geometric layout of K Map shown in Fig. 3.2.1(b).
Tru th Tab le

M in-
te rm

INP UTS O UTP UTS
A B
0
0
1
1

0
1
0
1

Y
y
y
y
y

0
1

2

3

m
m
m
m

0
1

2

3

0

2

1

3

A

A

′

B ′ B

or
y

y

0

2

0

1

0 1

y

y

1

3

B
A

(a) (b) (c)

Fig. 3.2.1 (a) (b) and (c)

The four squares (0, 1, 2, 3) represent the four possibly combinations of A and B in a two
variable truth table. Square 1 in the K-map; then, stands for A′B′, square 2 for A′B, and so
forth. The map is redrawn in Fig. 3.2.1(c) to show the relation between the squares and the
two variables. The 0’s and 1’s marked for each row and each column designate the values of
variables A and B respectively. A appears primed in row 0 and unprimed in row 1. Similarly
B appears primed in column 0 and unprimed in column 1.

Now let us map a Boolean function Y = A + B.

Method I—(i) Draw the truth table of given function.

Min-term A B Y

m0 0 0 0

m1 0 1 1

m2 1 0 1

m3 1 1 1

(ii) Draw a two variable K map an fill those squares with a 1 for which the value of
minterm in the function is equal to 1.

1

1

1

0

1

0 1

⇒
m

m

0

2

0

1

0 1

m

m

1

3

B
A

B
A

The empty square in the map represent the value of minterms [m0 (or A′B′)] that is
equal to zero in the function. Thus, actually this empty square represents zero.

Boolean Function Minimization Techniques 115

Method II-(i) Find all the minterms of the function Y = A + B.

Y = A + B = A(B + B′) + B(A + A′)
= AB + AB′ + AB + A′B

⇒ Y = AB + AB′ + A′B
(ii) Draw a two variable K map using this sum of minterms expression.

Y = AB + AB + A B′′
↓ ↓ ↓
11 10 01 1

1

1

0

1

0 1B
A

— These a K map, is nothing more than an interesting looking Truth-Table, and it simply
provide a graphical display of ‘implicants’ (minterms) involved in any SOP canonical or stand-
ard form expression.

Now examine a three variable truth table shown in 3.2.1 (d).

Truth Table

Min term INPUTS OUTPUT

A B C Y

m0 0 0 0 y0

m1 0 0 1 y1

m2 0 1 0 y2

m3 0 1 1 y3

m4 1 0 0 y4

m5 1 0 1 y5

m6 1 1 0 y6

m7 1 1 1 y7

Fig. 3.2.1 (d)

Here we need a K-map with 8 squares represent all the combination (Minterms) of input
variables A, B and C distinctly. A three-variable map is shown in Fig. 3.2.1 (e).

m

m

0

4

0

1

00 01

m

m

1

5

BC
A

m

m

3

7

m

m

2

6

11 10

Fig. 3.2.1 (e)

It is very important to realize that in the three variable K-map of Fig. 3.2.1 (e), the
minterms are not arranged in a binary sequence, but similar to ‘Gray Code’ sequence.

The gray code sequence is a unit distance sequence that means only one bit changes in
listing sequence.

116 Switching Theory

Our basic objective in using K-map is the simplify the Boolean function to minimum
number of literals. The gray code sequencing greatly helps in applying. ‘Logic Adjacency
theorem’ to adjacent squares that reduces number of literals.

The map is Fig. 3.2.1 (e) is redrawn in Fig. 3.2.1 (f) that will be helpful to make the
pictures clear.

A B C ′′ ′0

1

00 01
BC

A 11 10

A B C′ ′ A B C′ A B C′ ′

AB C′′ AB C′ ABC ABC ′

Fig. 3.2.1 (f)

We can see that any two adjacent squares in the map differ by only one variable, which
is primed in one square and unprimed in other.

For example m3 (A′BC) and m7 (ABC) are two adjacent squares. Variable A is primed in
m3 and unprimed in m7, whereas the other two variables are same in both squares. Now
applying ‘logic adjacency’ theorem, it is simplified to a single AND term of only two literals.
To clarify this, consider the sum of m3 and m7 → m3 + m7 = A′BC + ABC = BC(A + A′) = BC.

3.2.2 Boolean Expression Minimization Using K-Map
1. Construct the K-map as discussed. Enter 1 in those squares corresponding to the

minterms for which function value is 1. Leave empty the remaining squares. Now
in following steps the square means the square with a value 1.

2. Examine the map for squares that can not be combined with any other squares and
from group of such signal squares.

3. Now, look for squares which are adjacent to only one other square and form groups
containing only two squares and which are not part of any group of 4 or 8 squares.
A group of two squares is called a pair.

4. Next, Group the squares which result in groups of 4 squares but are not part of
an 8-squares group. A group of 4 squares is called a quad.

5. Group the squares which result in groups of 8 squares. A group of 8 squares is
called octet.

6. Form more pairs, quads and outlets to include those squares that have not yet been
grouped, and use only a minimum no. of groups. There can be overlapping of
groups if they include common squares.

7. Omit any redundant group.
8. Form the logical sum of all the terms generated by each group.

Using Logic Adjacency Theorem we can conclude that,

— a group of two squares eliminates one variable,

— a group of four sqs. eliminates two variable and a group of eight squares eliminates
three variables.

Now let us do some examples to learn the procedure.

Example 3.2. Simplify the boolean for F = AB + AB′ + A′B. Using two variable K-map.
This function can also be written as

F(A, B) = Σ(1, 2, 3)

Boolean Function Minimization Techniques 117

Solution. Step 1. Make a two variable K-map and enter 1 in squares corresponding to
minterms present in the expression and leave empty the remaining squares.

m

m

0

2

0

1

0 1

m

m

1

3

B
A

Step 2. There are no 1’s which are not adjacent to other 1’s. So this step is discarded.

1

1

1

0

1

0 1B
A

Step 3. m1 is adjacent to m3 ⇒ forms a group of two squares and is not part of any group
of 4 squares. [A group of 8 squares is not possible in this case].

1

1

1

0

1

0 1B
A

Similarly m2 is also adjacent to m3 ⇒ forms another group of two squares and is not a
part of any group of 4 squares.

Step 4 and 5. Discarded because these in no quad or outlet.

Step 6. All the 1’s have already been grouped.

There is an overlapping of groups because they include common minterm m3.

Step 7. There is no redundant group.

Step 8. The terms generated by the two groups are ‘OR’ operated together to obtain the
expression for F as follows:

F = A + B

↓ ↓
From From group
group m2 m3 m1 m3

↓ ↓
This row is This column is
corresponding corresponding to
to the value the value of B is
of A is equal equal to 1.
to 1.

Example 3.3. Simplify the Boolean function F (A, B, C) = Σ (3, 4, 6, 7).

Solution. Step 1. Construct K-map.

There are cases where two squares in the map are considered to be adjacent even
through they do not touch each other. In a three var K-map, m0 is adjacent to m2 and m4
is adjacent to m6.

118 Switching Theory

Algebraically m0 + m2 = A′B′C′ + A′BC′ = A′C′
and m4 + m6 = AB′C′ + ABC′ = AC′

m

m

0

4

0

1

00 01

m

m

2

5

BC
A

m

m

3

7

m

m

2

6

11 10

Consequently, we must modify the definition of adjacent squares to include this and other
similar cases. This we can understand by considering that the map is drawn on a surface
where the right and left edges tough each other to form adjacent squares.

Step 2. There are no 1’s which are not adjacent to other 1’s so this step is discarded.

m

m

0

4

0

1

00 01

m

m

2

5

BC
A

m

m

3

7

m

m
2

6

11 10

1 1

1

1

Step 3. m3 is adjacent to m7. It forms a group of two squares and is not a part of any
group of 4 or 8 squares.

Similarly m6 is adjacent to m7. So this is second group (pair) that is not a part of any
group of 4 or 8 squares.

Now according to new definition of adjacency m4 and m6 are also adjacent and form a
pair. Moreover, this pair (group) is not a part of any group of 4 or 8 sqs.

Step 4 and 5. Discarded, because no quad or octet is possible.

Step 6. All the 1’s have already been grouped. These is an overlapping of groups because
they include a common minterm m7.

Step 7. The pair formed b m6 m7 is redundant because m6 is already covered in pair
m4 m6 and m7 in pair m3 m7. Therefore, the pair m6 m7 is discarded.

Step 8. The terms generated by the remaining two groups are ‘OR’ operated together
to obtain the expression for F as follows:

F = AC′ + BC

 ↓ ↓
From group m4 m6 From group m3 m7.
The row is corresponding Correspond to both rows
to the value of A = 1 and (⇒ A = 0 and A = 1) so A
in the two columns (00 → is omitted, and single
B′C′ and the 10 → BC′), the column (⇒ B = 1 and C = 1),
value C = 0 ⇒ C′ is common ⇒ BC.
= AC′

With a little more practice, you can make yourself comfortable in minimization using K-
map technique. Then you have no used to write all the steps. You can directly minimize the
given function by drawing simply the map.

Now let us do one more example of a three variable K-map.

Boolean Function Minimization Techniques 119

Example 3.4. Simply the following Boolean function by first expressing it in sum of
minterms.

F = A′B + BC′ + B′C′
Solution. The given Boolean expression is a function of three variables A, B and C. The

three product terms in the expression have two literals and are represented in a three
variable map by two squares each.

The two squares corresponding to the first terms A′B are formed in map from the
coincidence of A′ (⇒ A = 0, first row) and B (two last columns) to gives squares 011 and 010.

1

1

0

1

00 01
BC

A

1 1

1

11 10

B C ′′ A B′ BC ′

Note that when marking 1’s in the squares, it is possible to find a 1 already placed there
from a preceding term. This happens with the second therm BC′, has 1’s in the sqs. which
010 and 110, the sq. 010 is common with the first term A′B, so only one square (corresponding
to 110) is marked 1.

Similarly, the third term B′C′ corresponds to column 00 that is squares 000 and 100.
The function has a total of five minterms, as indicated by five 1’s in the map. These are

0, 2, 3, 4 and 6. So the function can be expressed in sum of minterms term:
F (A, B, C) = Σ(0, 2, 3, 4, 6)

Now, for the simplification purpose, let us redraw the map drawn above:

1

1

0

1

00 01
BC

A
1 1

1

11 10

First we combine the four adjacent squares in the first and last columns to given the
single literal term C′.

The remaining single square representing minterm 3 is combined with an adjacent
square that has already been used once. This is not only permissible but rather desirable
since the two adjacent squares give the two literal term A′B and the single sq. represent the
three literal minterm A′BC. The simplified function is therefore,

F = A′B + C′

3.2.3 Minimization in Products of Sums Form
So far, we have seen in all previous examples that the minimized function were ex-

pressed in sum of products form. With a minor modification, product of sums (POS) form can
be obtained. The process is as follows:

1. Draw map as for SOP; mark the 0 entries. The 1’s places in the squares represents
minterms of the function. The minterms not included in the function denote the
complement of the function. Thus the complement of a function is represented on
the map by the squares marked by 0’s.

2. Group 0 entries as you group 1 entries for a SOP reading, to determine the
simplified SOP expression for F′.

120 Switching Theory

3. Use De Morgan’s theorem on F′ to produce the simplified expression in POS form.

Example 3.5. Given the following Boolean function:

F = A′C + A′B + AB′C + BC

Find the simplified products of sum (POS) expression.

Solution. Step 1. We draw a three variable K-map. From the given function we observe
that minterms 1, 2, 3, 5, and 7 are having the value 1 and remaining minterms i.e., 0, 4 and
6 are 0. So we mark the 0 entries.

0

0

0

1

00 01
BC

A
1

1

1

0

11 10

1

1

Step 2. Minterms 0 and 4 forms a pair, giving value = B′C′. Similarly minterms 4 and
6 forms a second pair giving value = AC′. Therefore we get F′ = AC′ + B′C′.

Step 3. Applying De Morgan’s theorem automatically converts SOP expression into POS
expression, giving the value of F

⇒ (F′)′ = [AC′ + B′C′]′
⇒ F = [(AC′)′ . (B′C′)′]
⇒ F = (A + C) . (B + C)

3.2.4 Four Variable K-Map
Let us examine a four variable truth table shown is Fig. We used a K-map with 16

squares to represent all the minterms of input variables A, B, C and D distinctly. A four-
variable K-map is shown in fig.

m

m

0

4

00

01

11

10

00 01

m

m

1

5

BC
AB

m

m

3

7

m

m

2

6

11 10

m

m

1 2

8

m

m

1 3

9

m

m

1 5

11

m

m

1 4

1 0

Truth Table

Minterm Inputs Output

A B C D Y

m0 0 0 0 0 y0

m1 0 0 0 1 y1

m2 0 0 1 0 y2

m3 0 0 1 1 y3

m4 0 1 0 0 y4

m5 0 1 0 1 y5

m6 0 1 1 0 y6

Boolean Function Minimization Techniques 121

Minterm Inputs Output

A B C D Y

m7 0 1 1 1 y7

m8 1 0 0 0 y8

m9 1 0 0 1 y9

m10 1 0 1 0 y10

m11 1 0 1 1 y11

m12 1 1 0 0 y12

m13 1 1 0 1 y13

m14 1 1 1 0 y14

m15 1 1 1 1 y15

The rows and column are numbered in a reflected-code sequence, with only one digit
changing value between two adjacent rows or columns.

The minimization process is similar as well have done in a three variable K-Map. How-
ever the definition of adjacency can further be extended. Considering the map to be on a
surface with the top and bottom edges, as well as sight and left edges, touching each other
of form adjacent squares.

For example m0 is adjacent to m2, m4 as well as to m8, similarly m3 is adjacent to m1,
m2, m7 as will as to m11 and so on.

Example 3.6. Simplify the given fraction.

F = ABCD + AB′C′D′ + AB′C + AB

Solution. Step 1. The given function is consisting of four variables A, B, C and D. We draw
a four variable K-map. The first two terms in the function have fours literals and are repeated
in a four variable map by one square each. The square corresponding to first term ABCD is
equivalent to minterm 1111. (m15). Similarly the square for second term AB′C′D′ is equivalent
to minterm 1000 (m8) the third term in the function has three literals and is represented in a
four var map by two adjacent squares. AB' corresponds to 4th row (i.e. 10) in the map and C
corresponds to last two columns (i.e. 11 and 10) in the map. The last term AB has two (A term
with only one literal is represented by 8 adjacent square in map. Finally a 1 in all 16 squares
give F = 1. It means all the minterms are having the value equal to 1 in the function). Literals
and is represented by 4 adjacent squares. Here AB simply corresponds to 3rd row (i.e., AB = 11).

m

m

0

4

00

01

11

10

00 01

m

m

1

5

CD
AB

m

m

3

7

m

m

2

6

11 10

m

m

1 2

8

m

m

1 3

9

m

m

1 5

11

m

m

1 4

1 0

1 1 1 1

1 1 1
AB

ABCD
AB C′AB C D ′′ ′

Now let us redraw the map first for simplification purpose.

122 Switching Theory

Step 2. Is discarded. (No 1’s which are not adjacent to other 1’s)

Step 3. Discard (No pairs which are not part of any larger group)

Step 4. There are three quads.

Minterms 8, 10, 12, 14 from first quad.

Minterms 12, 13, 14, 15 form second quad

and Minterms 10, 11, 14, 15 form third quad.

Step 5. Discarded. (No octages)

Step 6. Discarded (All 1’s have been grouped.)

Step 7. Discard (No redundant term)

Step 8. The terms generated by three groups one ‘OR’ operated as follow

F = AD′ + AB + AC.

↓ ↓ ↓
From Second Third
First group group.
group

Example 3.7. Obtain (a) minimal sum of product (b) minimal product of sum expression
for the function given below:

F(w, x y, z) = ∈ (0, 2, 3, 6, 7, 8, 10, 11, 12, 15).

Solution. The given function can also be written in product of minterm form as

F(w, x, y, z) = ∏ (1, 4, 5, 9, 13, 14).

Squares with 1’s are grouped to obtain minimal sum of product; square with 0’s are
grouped to obtain minimal product of sum, as shown.

00

01

11

10

00 01
YZ

W X 11 10

1

1 1

1

1 1

1

1 1

1

(a) We draw a four variable map using minterms whose values in the function are equal to 1.

– Minterm 8 and 12. Four a pair.

– Minterms 0, 2, 8 and 10 form I quad.

– Minterms 3, 7, 11, 15 form II quad.

– Minterms 2, 3, 6, 7 form III quad.

Therefore, F = x'z + yz + w'y + wy'z'

↓ ↓ ↓ ↓
Due to II quad III quad Due to pair
I quad.

(b) We draw a four variable map using minterms whose values in the function are equal
to zero. These minterms are 1, 4, 5, 9, 13 and 14.

00

01

11

10

00 01
CD

AB 11 10

1 1 1 1

1 1 1

Boolean Function Minimization Techniques 123

00

01

11

10

00 01
YZ

W X 11 10

0

0

0

0

0

0

– Minterm 14 can not be combined with any other square in the map 4 fours a group
with single squares.

– Minterms 4 and 5 form a pair.

– Minterms 1, 5, 9 and 13 form a quad.

Therefore, F' = wxyz' + w'xy' + y'z

Applying De Morgan's theorem

(F')' = [wxyz′ + w′xy′ + y′z]′
⇒ F = (wxyz')'. w'xy'. (y'z)'

⇒ F = (w' + x'y' + z). (w + x' + y). (y + z').

3.2.5 Prime and Essential Implicants
So far we have seen a method for drawing and minimising Karnaugh maps in such a way

that unnecessary (redundant) groupings can be avoided. Now let us establish some important
definitions that will be used to a systematic procedure for combining squares in the process of
K-map minimization. To do this, consider a function defined as F (A, B, C, D) = Σ(0, 1, 2, 3,
5, 7, 8, 9, 10, 13, 15). Now we will analyze the grouping shown in the 4 variable map in Fig.

m

m

0

4

00

01

11

10

00 01

m

m

1

5

CD
AB

m

m

3

7

m

m

2

6

11 10

m

m

1 2

8

m

m

1 3

9

m

m

1 5

11

m

m

1 4

1 0

1

1 1 1 1

1

1 1

1 1 1

Here we see that all realistic groupings are shown. Note further that each group is
sufficiently large that is can not be completely covered by any other simple grouping. Each
of these five groupings is defined as a Prime implicant.

I group → covering minterms → 0, 2, 8, and 10, → B′D′
II group → covering minterms → 0, 1, 2, and 3 → A′B′
III group → covering minterms → 1, 5, 9, and 13 → C′D′
IV group → covering minterms → 1, 3, 5 and 7 → A′D′
V group → covering minterms → 5, 7, 9 and 15 → B′D′
IV group → covering minterms → 0, 1, 8, 9 → B′C′

124 Switching Theory

Thus ‘a prime implicant is a product term (or minterm) obtained by combining
the maximum possible number of adjacent squares in the map.

As we examine the set of prime implicates that cover this map, it becomes obvious that
some of the entries can be grouped in only one way. (Single way groupings). For example
there is only one way to group m10 with 4 adjacent squares. (⇒ I group only). Similarly there
is only one way to group m15 with the adjacent square (⇒ V group only). The resultant terms
from these groupings are defined as essential prime implicants.

Thus, ‘if a minterm in a square is covered by only one prime implicant, the
prime implicant is said to be essential’. The two essential prime implicant ⇒ B′D′ and
BD cover 8 minterms. The remaining three viz m1, m3 and m9 must be considered next.

The prime implicant table shows that m3 can be covered either with A'B' or with A′D.
m9 can be covered either with C'D or with B′C′.

m1 can be covered with any of form prime implicates A'B', A'D, B'C' or C'D.

Now the simplified expression is obtained form the sum of two essentials prime impli-
cates and two prime implicant that cover minterms. m1, m3, and m9. It means there one four
possible ways to write the simplified expression.

(a) BD + B'D' + A'B' + C'D

(b) BD + B'D' + A'B' + B'C'

(c) BD + B'D' + A'D + C'D

(d) BD + B'D' + A'D + B'C'

The simplified expression is thus obtained from the logical sum of all the essential prime
implicants plus the prime implicants that may be needed to cover any remaining minterms
not covered by simplified prime implicants.

3.2.6 Don’t care Map Entries
Many times in digital system design,

some input combinations must be consid-
ered as cases that “Just don't happen”, and
there are cases when the occurrence of par-
ticular combinations will have no effect on
the system, and if those combinations do
occur, “you don’t care”. For example, con-
sider the case where the outputs of a 4-bit
binary counter; which happens to home a
possible range from 0000 to 1111, is to be
converted to a decimal display having the
range of 0, 1, 2,, 9. The converter might
be a digital system having binary 4-bit in-
puts and decimal upto as shown Fig. 3.2.6.
In this particular case, the input combina-
tions 1001, 1010, 1011, 1100, 1101, 1110, 1111
are to be considered by combinations that
just can not be accepted by the digital sys-
tem if it is function properly.

Dig ital

system

converting

4 bit b inary

num ber to

a Decima l

num ber

0

1

2

3

4

5

6

7

8

9

0000
0001

1001
1010
1011
1100
1101
1110
1111

0
1
2
3

9
10
11
12
13
14
15

Fig. 3.2.6

Boolean Function Minimization Techniques 125

Therefore, when this digital system is being designed, these minterms in the map are
treated in a special way. That is a φ or a or × (cross) is entered into each square to signify
“don't care” MIN/MAX terms.

Reading a map, or grouping a map with don’t care entries is a simple process.

‘Group the φ don’t care ⇒ x) with a 1 grouping if and only if this grouping will result in
greater, simplification; otherwise treat it as if it were a 0 entry.

Example 3.8. Simplify the following Boolean function.

F (A, B, C, D) = Σ (0, 1, 2, 10, 11, 14)

d (5, 8, 9)

Solution. The K-map for the given function is shown with entries X (don’t care) in
squares corresponding to combinations 5, 8 and 9.

00

01

11

10

00 01
CD

AB 11 10

1

X 1 1

1 1 1

X

X

As discussed above, the 1’s and d’s (Xs) are combined in order to enclose the maximum
number of adjacent squares with 1. As shown in K-map in Fig (), by combining 1’s and d’s (Xs),
three quads can be obtained. The X in square 5 is left free since it doss not contribute in
increasing the size of any group. Therefore the

I Quad cores minterms 0, 2, 10 and d8

II Quad cores minterms 0, 1 and d 8, 9.

III Quad cores minterms 0, 1 and d 8, 9.

A pair covers minterms 10 and 14.

So, F = B'D + AB' + B'C' + ACD'
Due II III Due
to I quad Quad to

quad. Pair.

3.2.7 Five Variable K-Map
The Karnaugh map becomes three dimensional when solving logic problems with mare

than four variables. A three dimensional K-map will be used in this section.

0

4

12

8

00

01

11

10

00 01

1

5

13

9

DE
BC 11 10

3

7

15

11

2

6

14

10

A = 0

16

20

28

24

00

01

11

10

00 01

17

21

29

25

DE
BC 11 10

19

23

31

27

18

22

30

26

A = 1

126 Switching Theory

The 5 variable M-map contains 25 = 32 squares. Instead of representing a single 32-
square map, two 16-square K-maps are generally used. If the variable are A, B, C, D and E,
the two identical 16-square maps contain B, C, D and E variable with one 16-sq. map for A
= 1 and other 16-square map for A = 0 ⇒ (A). This is shown in Fig. 3.2.7 (a)

0

4

12

8

00

01

11

10

00

01
1

5

13

9

DEBC

11
10

3

7

15

11

2

6

14

10

A = 0

16

20

28

24

00

01

11

10

00

01
17

21

29

25

DEBC

11
10

19

23

31

27

18

22

30

26

A = 1

Fig. 3.2.7 (a)

The minimization procedure described so far with respect to functions of two, three or
four variables. Can be extended to the case of five variables.

It is noted that in order to identify the adjacent grouping in the 5-variable maps, we must
imagine that the two maps are superimposed on one another as shown. Every square in one
map is adjacent to the corresponding square in the other map, because only one variable,
changes between such corresponding squares. Thus rows and columns for one map is adja-
cent to the corresponding row and column on the other map and same rules are used for
adjancencies with in one 16 square map. This is illustrate in figure:

DE
BC

Adjacent
Rows

Ad jacent
Rows
Ad jacen t G roups

Ad jacen t cells

Ad jacen t colum ns

DE
BC

A =1A =0

Fig. 3.2.7 (b)

Boolean Function Minimization Techniques 127

Example 3.9. Simplify the given function.

F(A, B, C, D, E) = E (0, 4, 7, 8, 9, 10, 11, 16, 24, 25, 26, 27, 29, 31)

Solution. We make two 4-variable maps and fill minterms 0-15 in map corresponding
to A = 0 and 16 to 31 corresponding to A = 1

1

1

1

00

01

11

10

00 01

1

DE
BC 11 10

1

1 1

Subcube
4

Subcube
5

Subcube
3

Subcube
1

1

1

00

01

11

10

00 01

1

1

DE
BC 11 10

1

1 1

Subcube
2

A = 0 A = 1

We have 5-subcubes after grouping adjacent squares.

Subcube 1 is an octate which gives BC'

Subcube 2 is a qued which gives ABC' → In the map corresponding to A = 1

Subcube 3 is a pair which gives B'C'D'E'

Subcube 4 is a pair which gives A'B'C'E' → In the map corresponding to A = 0

Subcube 5 is a single squares which gives A'B'C'D'E → In the map corresponding to A = 0.

⇒ F (A, B, C, D, E) = BC' + ABC' + B'C'D'B' + A'B'D'E' + A'B'C'D' E

3.2.8 Six variable K-Map
A six variable K-map contains 26 = 64 squares. These square are divided into four identical

16-square maps as shown in Fig. 3.2.8 (a). It the variables are A, B, C, D, E and F, then each
16 square map contains C, D, E, and F as variables along with anyone of 4 combinations of A
and B.

0

4

12

8

00

01

11

10

00 01

1

5

13

9

EF
CD 11 10

3

7

15

11

2

6

14

10

16

20

28

24

00

01

11

10

00 01

17

21

29

25

EF
CD 11 10

19

23

31

27

18

22

30

26

AB = 00 AB = 01

32

36

44

40

00

01

11

10

00 01

33

37

45

41

EF
CD 11 10

35

39

47

43

34

38

46

42

48

52

60

56

00

01

11

10

00 01

49

53

61

57

EF
CD 11 10

51

55

63

59

50

54

62

58

AB = 10 AB = 11

Fig. 3.2.8 (a)

128 Switching Theory

In order to identify the adjacent groupings in the 6-variable maps, we must imagine that
the 4 maps are superimposed on one another. Figure shows different possible adjacent squares:

00

01

11

10

00 01
EF

CD 11 10 00
EF

CD

EF
CD

EF
CD

AB = 10 AB = 11

Ad jaen t
cells
(B C D E F)′′ ′ ′ ′

Adjacent
Q ueds
(C E)′

Adjacent
O ctates
(B E)′

Adjacent colum ns
(AE F)′

Adjacen t Rows
(ACD)′

AB = 00 AB = 01

Fig. 3.2.8 (b)

Example 3.10. Simplify the given Boolean function.

F(A, B, C, D, E, F) = Σ(0, 4, 8, 12, 26, 27, 30, 31, 32, 36, 40, 44, 62, 63)

Solution. We make four 4-varibale maps and fill the mentions 0-15 in map correspond-
ing to AB = 00, 16-31 corresponding to AB = 01, 32 – 47 corresponding to AB = 10 and 48 to
63 corresponding to A B = 11.

1

1

1

1

00

01

11

10

00 01
EF

CD 11 10

00

01

11

10

00 01
EF

CD 11 10

AB = 00 AB = 01

1

1

1

1

00

01

11

10

00 01
EF

CD 11 10

00

01

11

10

00 01
EF

CD 11 10

1

1

AB = 10 AB = 11

1

1

1

1

1

1

Subcube
1 of
Two
Q uads

Subcube 3 of
two pairs

Subcube 2
o f one quad

Boolean Function Minimization Techniques 129

We have 3-subcubes after grouping adjacent square.

1. Subcubes 1 contains two quads gives B'E'F'

2. subcube 2 is form of one quad gives A'BCE

3. subcube 3 is form of two pairs gives BCDE

⇒ F(A, B, C, D, E, F) = B'EF' + A'BCE + BCDE.

Maps with seven or more variables needs too many squares and are impractical to use.
The alternative is to employ computer programs specifically written to facilitate the simpli-
fication of Boolean functions with a large number of variables.

3.2.9 Multi Output Minimization
Finding the optimal cover for a system of output expressions all of which are a function

of the some variables is somewhat tedious task. This task is basically one of identifying all
possible PIs that cover each implicated minterm in each O/P expression, then carrying out
a search for the minimal cost cover by using ‘shared’ terms.

Suppose you were given the following system of expressions and asked to find the
optimal cover for the complete system, implying that you must find how to optimally share
terms between the expressions.

F1 (A, B, C) = Σ (0, 2, 3, 5, 6)

F2 (A, B, C) = Σ (1, 2, 3, 4, 7)

F3 (A, B, C) = Σ (2, 3, 4, 5, 6)

⇒ we first generate the maps for three expressions as shown

1

1

0

1

00 01
BC

A
1 1

1

11 10

F1

1

0

1

00 01
BC

A
1 1

1

11 10

F2

1

1

0

1

00 01
BC

A
1 1

1

11 10

F3

1

Then we make up an implicant table as shown in Fig. 3.2.9, showing how each minterm
can be covered:

Minterm F1 F2 F3

m0 A'B'C'/ A'C' – –

m1 – A'B'C'/ A'C' –

m2 A'B'C'/ A'B /A'C'/BC' A'BC'/ A'B A'BC' A'B' B'C'

m3 A'BC/ A'B A'BC/ A'B /A'C/BC A'BC/ A'B

m4 – AB'C' AB'C' / AB'/AC'

m5 AB'C – AB'C / AB'/AC'

m6 AB'C – AB'C / AC' /AC'

m7 ABC/ BC –
Fig. 3.2.9 Implicant Table

130 Switching Theory

We forst scan the table for rows with only a single entry. These are related to essential
implicants (m0, m1, m7). We take the largest grouping and update the table (In table by
making circle).

Next scan the rows for those which have two entries, selecting the functions that have
only a single way grouping option (m4 under F2 and m5 and mb under F1). It means have
to find the common turn. We take the common term and update the table (In table by making
ovals).

Finally, scan the rows for those rows which have two entries, selecting the functions that
have only a single way grouping option or we find the common term. We take the common
term and update the table (In table by making rectangular boxes).

Now using implicant table, the three functions can be written as:

F1 = A C + A B + A B + AB C + BC′ ′ ′ ′ ′ ′

= A C + A B + BC + AB C′ ′ ′ ′ ′

F2 = A C + A B + A B + AB C + BC′ ′ ′ ′ ′

= A C + A B + AB C + BC′ ′ ′ ′

F3 = A B + A B + AB C + BC′ ′ ′ ′
= A B + BC + AB C + AB C′ ′ ′ ′ ′

We see; F3 is totally generated from shared terms from F1 and F2 with considerable
saving over a combinational function by function reduction.

In summary, we can say that many times multiple outputs are derived from the same
input variables. In this case, we simplify and draw logic diagram of each function separately.
Sometimes, the simplified output functions may have common terms. The common term used
by one O/P function can be shared by other output functions. This sharing of common terms
reduces the total number of gates.

3.3 MINIMIZATION USING QUINE-MCCLUSKEY (TABULAR) METHOD
The K-map method is suitable for simplification of Boolean functions up to 5 or 6

variables. As the number of variables increases beyond this, the visualization of adjacent
squares is difficult as the geometry is more involved.

The ‘Quine-McCluskey’ or ‘Tabular’ method is employed in such cases. This it a system-
atic step by step procedure for minimizing a Boolean expression in standard form.

Procedure for Finding the Minimal Expression
1. Arrange all minterms in groups, such that all terms in the same group have same

number of 1’s in their binary representation. Start with the least number of 1’s and
continue with grouping of increasing number of 1’s the number of 1’s in each term
is called the index of that term i.e., all the minterms of some index are placed in
a some group. The lowest of value index is zero. Separate each group by a thick
line. This constitutes the I stage.

2. Compare every term of the Lowest index (say i) group with each term in the
successive group of index (say, i + 1). If two minterms differ only one variable, that
variable should be removed and a dash (–) is placed at the position, thus a new term
with only less literal is formed. If such a situation occurs, a check mark (✔) is

Boolean Function Minimization Techniques 131

placed next to both minterms. After all pairs of terms with indices i and (i + 1) have
been considered, a thick line is drawn under the last terms.
When the above process has been repeated for all the groups of I stage, one stage
of elimination have been completed. This constitutes the II stage.

3. The III stage of elimination should be repeated of the nearly formed groups of
second stage. In this stage, two terms can be compared only than they have dashes
in some positions.
The process continues to next higher stages until no further comparisons are
possible. (i.e., no further elimination of literals).

4. All terms which remain unchecked (No ✔ sign) during the process are considered
to be prime implicants (PIs). Thus, a set of all PIs of the function is obtained.

5. From the set of all prime implicates, a set of essential prime implicants (EPIs) must
be determined by preparing prime implicant chart as follow.
(a) The PIs should be represented m rows and each minterm of the function in a column.
(b) Crosses should be placed in each row to show white composition of minterms

that makes the PIs.
(c) A complete PIs chart should be inspected for columns containing only a single

cross. PIs that cover minterms with a single cross in their column are called EPIs.
6. The minterms which are not covered by the EPIs are taken into consideration and

a minimum cover is obtained form the remaining PIs.
Now to clarify the above procedure, lets do an example step by step.
Example 3.11. Simplify the given function using tabular method.

F = A, B, C, D = ∑ (0, 2, 3, 6, 7, 10, 12, 13)
Solution. 1. The minterms of the function are represened in binary form. The binary

represented are grouped into a number of sections interms of the number of 1’s index as
shown in Table 3.3.1 (a).

Table 3.3.1 (a)

Minterms Binary No. Minterms Index Binary
ABCD of 1's Group ABCE

m0 0 0 0 0 0 m0 0 0 0 0 0 ✔

m2 0 0 1 0 1 m2 0 0 1 0 ✔

m3 0 0 1 1 2 m8
1 1 0 0 0 ✔

m6 0 1 1 0 2 m3 0 0 1 1 ✔

m7 0 1 1 1 3 m6 2
0 1 1 0 ✔

m8 1 0 0 0 1 m10 1 0 1 0 ✔

m10 1 0 1 0 2 m12 1 1 0 0 ✔

m12 1 1 0 0 2 m7 0 1 1 1 ✔

m13 1 1 0 1 3 m13
3 1 1 0 1 ✔

2. Compare each binary term with every term in the adjacent next higher category.
If they differ only by one position put a check mark and copy the term into the next
column with (–) in the place where the variable is unmatched, which is shown in
next Table. 3.3.1 (b1)

132 Switching Theory

Table 3.31 (b1)

Minterm Binary

Group A B C D

0, 2 0 0 – 0 ✔

0, 8 – 0 0 0 ✔

2, 3 0 0 1 – ✔

2, 6 0 – 1 0 ✔

2, 10 – 0 1 0 ✔

8, 10 1 0 – 0 ✔

8, 12 1 – 0 0 PI

3, 7 0 – 1 1 ✔

6, 7 0 1 1 – ✔

12, 13 1 1 0 – PI

Table 3.3.1 (b2)

Minterm Binary

Group A B C D

0, 2, 8, 10 – 0 – 0 PI

0, 8, 2, 10 – 0 – 0 PI eliminated

2, 3, 6, 7 0 – 0 – PI

2, 6, 3, 7 0 – 1 – PI eliminated.

3. Apply some process to the resultant column of Table 3.3.1(b1) and continue until no
further elimination of literals. This is shown in Table (3.3.1(b)) above.

4. All terms which remain unchecked are the PIs. However note that the minterms
combination (0, 2) and (8, 10) form the same combination (0, 2, 8, 10) as the comp..
(0, 8 and (2. 10). The order in which these combinations are placed does not prove
any effect. Moreover as we know that x + x = x1 thus we can eliminate one of these
combinations.

The same occur with combination (2, 3) and (6, 7).

5. Now we prepare a PI chart to determine EPIs as follows shown in Table 3.3.1 (c).

Table 3.3.1 (c)

Minterms

Prime Implicants 0 2 3 6 7 8 10 12 13

(8, 12) × ×

(12, 13) * × ×

(0, 2, 8, 10) * × × × ×

(2, 3, 6, 7) * × × × ×

✔ ✔ ✔ ✔ ✔ ✔

Boolean Function Minimization Techniques 133

(a) All the PIs are represented in rows and each minterm of the function in a
column.

(b) Grosses are placed in each row to show the composition of minterms that make
PIs.

(c) The column that contains just a single cross, the PI corresponding to the row
in which the cross appear is essential. Prime implicant. A tick mark is part
against each column which has only one cross mark. A star (*) mark is placed
against each. EPI.

6. All the minterms have been covered by EPIs.

Finally, the sum of all the EPIs gives the function in its minimal SOP form

EPIs. Binary representation Variable Representation

A B C D

12, 13 1 1 0 – ABC'

0, 2, 8, 10 – 0 – 0 B'D'

2, 3, 6, 7 0 – 1 – A'C

Therefore F = ABC' + B'D' + A'C.

If don't care conditions are also given along with the provolone friction, they are also
used to find the prime implicating, but it is not compulsory to include them in the final
simplified expression.

Example 3.12. Simplify the given function using tabular method.

F(A, B, C, D) = ∑(0, 2, 3, 6,7)

d (5, 8, 10, 11, 15)

Solution. 1. Step 1 is shown in Table 3.3.2(a). The don’t care minterms are also included.

Table 3.3.2 (a)

Minterms Binary No. Minterms Index Binary
A B C D of 1’s Group ABCD

m0 0 0 0 0 0 m0 0 0 0 0 0 ✔

m2 0 0 1 0 1 m2 0 0 1 0 ✔

m3 0 0 1 1 2 m8 1 1 0 0 0 ✔

m5 0 1 0 1 2 m3 0 0 1 1 ✔

m6 0 1 1 0 2 m5 2 0 1 0 1 ✔

m7 0 1 1 1 3 m6 0 1 1 0 ✔

m8 1 0 0 0 1 m10 1 0 1 0✔

m10 1 0 1 0 2 m7 3 0 1 1 1 ✔

m11 1 0 1 1 3 m11 1 0 1 1 ✔

m15 1 1 1 1 4 m15 4 1 1 1 1 ✔

2. Step 2 is shown in Table 3.3.2 (b1).

3. Step 3 is shown in Table 3.3.2 (b2).

134 Switching Theory

Table 3.3.2 (b1)

Minterm Binary

Group A B C D

0, 2 0 0 – 0 ✔

0, 8 – 0 0 0 ✔

2, 3 0 0 1 – ✔

2, 6 0 – 1 0 ✔

2, 10 – 0 1 0 ✔

8, 10 1 0 – 0 ✔

3, 7 0 – 1 1 ✔

3, 11 – 0 1 1 ✔

5, 7 0 1 – 1 PI

6, 7 0 1 1 – ✔

10, 11 1 0 1 – ✔

7, 15 – 1 1 1 ✔

11, 15 1 – 1 1 ✔

Table 3.3.2 (b2)

Minterm Binary

Group A B C D

0, 2, 8, 10 – 0 – 0 PI

0, 8, 2, 10 – 0 – 0 PI Eliminated

2, 3, 6, 7 0 – i – PI

2, 3 10, 11 – 0 1 – PI

2, 6, 3, 7 0 – 1 – PI Eliminated

2, 10, 3, 11 – 0 1 – PI Eliminated

3, 7, 11, 15 – – 1 1 PI

3, 11, 7, 15 – – 1 1 PI Eliminated

4. All the terms which remain unchecked are PIs. Moreover one of two same
combinations is eliminated.

5. Step 5 is to prepare a PI chart to determine EPIs as shown in Table 3.3.2 (c).

Note, however that don’t care minterms will not be listed as column headings in
the chart as they do not have to be covered by the minimal (simplified) expression.

Boolean Function Minimization Techniques 135

Table 3.3.2 (c)

Prime Implicants Minterms

0 2 3 6 7

(5, 7) ×

(0, 2, 8, 10) * × ×

(2, 3, 6, 7) * × × × ×

(2, 3, 10, 11) × ×

(3, 7, 11, 15) × ×

✔ ✔

6. All the minterms have been covered by EPIs.

Therefore F (A, B, C, D) = B'D' + A'C

Example 3.13. Simplify the given function using tabular method:

F (A, B, C, D, E, F, G) = S (20, 28, 38, 39, 52, 60, 102, 103, 127)

Solution. Step 1 is shown in Table 3.3.3 (a).

Minterms Binary No. Minterms Index Binary
ABCDEFG of 1’s Group ABCDEFG

m20 0 0 1 0 1 0 0 2 m20 2 0 0 1 0 1 0 0 ✔

m28 0 0 1 1 1 0 0 3 m28 0 0 1 1 1 0 0 ✔

m38 0 1 0 0 1 1 0 3 m38 3 0 1 0 0 1 1 0 ✔

m39 0 1 0 0 1 1 1 4 m52 0 1 1 0 1 0 0 ✔

m52 0 1 1 0 1 0 0 3 m39 4 0 1 0 0 1 1 1 ✔

m60 0 1 1 1 1 0 0 4 m60 0 1 1 1 1 0 0 ✔

m102 1 1 0 0 1 1 0 4 m102 1 1 0 0 1 1 0 ✔

m103 1 1 0 0 1 1 1 5 m103 5 1 1 0 0 1 1 1 ✔

m127 11 1 1 1 1 1 7 m127 7 1 1 1 1 1 1 1 PI

2. Step 2 is shown in Table 3.3.3 (b1).

3. Step 3 is shown in Table 3.3.3 (b2).

Table 3.3.3 (b1)

Minterms Binary

Group A B C D E F G
20, 28 0 0 1 – 1 0 0 ✔

20, 52 0 – 1 0 1 0 0 ✔

28, 60 0 – 1 1 1 0 0 ✔

38, 39 0 1 0 0 1 1 – ✔

38, 102 – 1 0 0 1 1 0 ✔

52, 60 0 1 1 – 1 0 0 ✔

39, 103 – 1 0 0 1 1 1 ✔

102, 103 1 1 0 0 1 1 – ✔

136 Switching Theory

Table 3.3.2 (b2)

Mintesms Binary

Group A B C D E F G

20, 28, 52, 60 0 – 1 – 1 0 0 PI

20, 52, 28, 60 0 – 1 – 1 0 0 PI Eliminated

38, 39 102, 103 – 1 0 0 1 1 – PI

38, 102, 39, 103 – 1 0 0 1 1 – PI Eliminated

4. All the terms which remain unchecked are PIs. Moreover one of two same
combinations is eliminated.

5. PI chart to determine EPIs is shown in Table 3.3.3 (c).

Table 3.3.3 (c)

Prime Implicants Minterms

20 28 38 39 52 60 102 103 127

127 * ×

(20, 28, 52, 60) * × × × ×

(38, 39, 102, 103) * × × × ×

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

6. All the minterms have been covered by EPIs.

Therefore F (A, B, C, D, E, F, G) = ABCDEFG + A'CEF'G' + BC'D'EF

3.4 EXERCISES
1. Using Boolean algebra simplify each of the following logic expressions as much as

possible:

(a) Z = A(A + AB) (A + ABC) (A + ABCD)

(b) C = (X X X X1 2 2 3′ + ′ ′)

2. Draw the simplest possible logic diagram that implements the output of the logic
diagram given below.

A
B

C

H

3. Write the logic expression and simplify it as much as possible and draw a logic
diagram that implements the simplified expression.

Boolean Function Minimization Techniques 137

A

B

C
X

D

4. Obtain the simplified expression in s-of-p for the following Boolean functions:

(a) xy x y z x yz+ ′ ′ ′ + ′ ′

(b) ABD + A′C′D′ + A′B + ACD + AB′D′

(c) x z w xy w x y xy′ + ′ ′ + ′ + ′()

(d) F (x y z, ,) (, , ,)= Σ 2 3 6 7

(e) F (A, B, C, D) = (7, 13, 14, 15)Σ

5. Use a K-map to simplify each of the following logic expressions as much as possible:

(i) F = AB + A B + AB′ ′

(ii) G = X Y Z + X YZ + XY Z + X Y Z + XYZ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
(iii) H = A B CD + AB C D + A B C D + ABC D + A B C D + AB C D + ABCD′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
(iv) W = X Y Z + X YZ + XYZ + XY Z + X YZ′ ′ ′ ′ ′ ′

6. Simplify the following logic expressions using K-maps and tabular method.

(a) F(A, B, C) = A′C + B′C+AB′C′
(b) G(A, B, C, D) = B′CD + CD′ + A′B′C′D + A′B′C

7. Simplify the Boolean function F(ABCDE) = Σ(0, 1, 4, 5, 16, 17, 21, 25, 29)

8. Simplify the following Boolean expressions using K-maps and Tabular method.

(i) BDE + B′C′D + CDE + ABCE + ABC + BCDE

(ii) ABCE + ABCD + BDE + BCD + CDE + BDE

(iii) F(ABCDEF) = Σ(6, 9, 13, 18, 19, 27, 29, 41, 45, 57, 61)

9. Draw Karnaugh maps for the following expressions:

F = A .B .C + A .B .C + A.B .C + A.B.C′ ′ ′ ′ ′ ′
F = A .B.C + A.B.C + A .B.C + A.B.C + A.B .C′ ′ ′ ′ ′ ′
F = A B C D + A.B C D + A B C D + A .B .C D + A B C .D.′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

+ A B C D + A .B .C.D + A B.C.D′ ′ ′ ′ ′ ′ ′. .

10. Simplify the following logic expressions using karnaugh maps. Draw logic diagrams
for them using only (a) NAND, (b) NOR gates, assuming inputs A, B, C, and D only
are available.

Y = A B C D + A.B C D + A B C D + A .B .C D + A B C .D′ ′ ′ ′ ′ ′ ′ ′.

+ ′ ′ ′ ′ ′A .B .C.D + A .B.C.D

138 Switching Theory

Y = A B C D + A .B C D + A B C D + A .B.C D + A B C.D + A.B .C.D′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′.

Y = A B C D + A.B C D + A B C D + A .B .C D+ A B C.D + A.B.C .D′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′.

+ ′ ′ ′ ′ ′ ′ ′ ′A .B .C.D + A.B .C.D + A.B .C .D + AB .C.D

Y = A.B.C .D + A .B .C .D + A.B .C .D + A.B.C.D + A.B.C.D′ ′ ′ ′ ′ ′ ′ ′ ′
11. The institute’s pool room has four pool tables lined up in a row. Although each table

is far enough from the walls of the room, students have found that the tables are
too close together for best play. The experts are willing to wait until they can
reserve enough adjacent tables so that one game can proceed unencombered by
nearby tables. A light board visible outside the pool room shows vacant tables. The
manager has developed a digital circuit that will show an additional light whenever
the experts’ desired conditions arise. Give a logic equation for the assertion of the
new light signal. Simplify the equation using a K-Map.

12. Simlify the Boolean functions using tabular method and verify result with K-map.

(a) F (w x y z, , ,) (, , , , , , , , , ,)= Σ 0 1 2 4 5 6 8 9 12 13 14

(b) F (w x y z, , ,) (, , , , ,)= Σ 2 3 12 13 14 15

(c) F (A B C D, , ,) (, , ,)= Σ 4 6 7 15

(d) F (A B C D, , ,) (, , ,)= Σ 7 13 14 15

(e) F (, ,x y z) (, , ,)= Σ 7 13 14 15

13. Simplify the Boolean function F using the don’t care conditions d, in (I) SOP and
(II) POS:

F = A B D + A CD + A BC′ ′ ′ ′ d = ′ ′ ′ ′A BC D + ACD + AB D

F = (w x y x y xyz x z y w′ ′ + ′ ′ + + ′ ′ +) () d w x y z yz wyz= ′ ′ + ′ +()

F = ACE + A CD E + A C DE′ ′ ′ ′ ′ d = ′ ′ ′ ′ ′DE + A D E + AD E

14. Use a Karnaugh map to simplify each of the following logic expressions as much
as possible.

(a) F = A B CD + AB C D + A B CD + ABC D + ABCD′ ′ ′ ′ ′ ′ ′ ′ ′

Solution. F = ABD + A′B′D + B′C′

(b) G = A C + B C + AB C + A B′ ′ ′ ′ ′

Solution. G = AB + A B + A C or AB + A B + B C′ ′ ′ ′ ′ ′

(c) H = B CD + CD + A B C D + A B C′ ′ ′ ′ ′ ′ ′ ′

Solution. H = B CD + CD + A B C D + A B C′ ′ ′ ′ ′ ′ ′ ′

(d) F = A + B + C) (A + B + C) (A + B + C)(′ ′ ′

Solution. F = B + AC′

15. Use a Karnaugh map to simplify each of the following logic expressions as much
as possible.

(a) W = (AB C) AB C) (ABC)′ ′ ′ ′ ′(

Boolean Function Minimization Techniques 139

(b) M = X X X X X X X X X2 3 1 2 3 3 1 2 3+ ′ ′ + ′ + ′

16. Using Boolean Algebra simplify

(a) (A + B) (A + C) (b) A + ABC + ABCD + ABCDEB

(c) AB + ABC A+ (d) (A + A) (AB + ABC)

(e) AB + (A + B)C + AB

17. Use a karnaugh map to simplify each function to a minimum sum-of-products form:

(a) X = ABC + ABC + ABC (b) X = AC [B + A (B + C)]

(c) X = DEF + DEF + DEF

18. A B C F1 A B C F2

0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 1

0 1 0 0 0 1 0 1

0 1 1 0 0 1 1 1

1 0 0 0 1 0 0 0

1 0 1 1 1 0 1 1

1 1 0 0 1 1 0 1

1 1 1 1 1 1 1 0

Transfer the input-output specifications for F1 and F2 given above to 3 variable
Karnaugh maps.

19. Using a Karnagh map simplify the following equations

(a) X = AB + AC + BC + AB + AC + ABC + ABC

(b) X = ABC + ACD + ABC + BCD + ABC + ABD + ABCD

(c) X = D A[C + BC] + A [C + BC]) + BCD(

(d) X = ABC + BCD + ABD + ABCD + ACD + ABCD

20. Simplify the following using Boolean Algebra

(a) z w x w x y= +. . .

(b) z x y x y= + +() . ()

(c) z x y w y w x x y v= + + +.

(d) z x y x w y x w y= + + + +().().[.()]

21. Consider the function

z f x y w v x v x w y w y v= = + +(, , ,) (. .). .(.)

(a) Draw a schematic diagram for a circuit which would implement this function.

22. Simplify the Boolean function by tabular method

140 Switching Theory

F(A, B, C, D, E) = Σ(0, 1, 4, 5, 16, 17, 21, 25, 29)

23. Simplify the following function in (a) s–o-p

and (b) p–o–s

F(A, B, C, D) = ∏(3, 4, 6, 7, 11, 12, 13, 14, 15)

24. Simplify the Boolean function using tabular method.

F(A, B, C, D, E) = Σ(0, 1, 4, 5, 16, 17, 21, 25, 29, 30)

25. Simplify the Boolean function using tabular method

F(A, B, C, D, E, F) = Σ(6, 9, 13, 18, 19, 27, 29, 41, 45, 57, 61, 63)

4.0 INTRODUCTION
Combinational logic circuits are circuits in which the output at any time depends upon

the combination of input signals present at that instant only, and does not depend on any past
conditions.

The block diagram of a combinational circuit with m inputs and n outputs is shown in
Fig. 4.0.

Combinationa l
C ircu it

Inpu ts O utpu ts
X 1
X2
X3

Xm

Y1
Y2
Y3

Yn

(n 2) ≤ m

Fig. 4.0 Block Diagram of combinational Logic circuit.

In particular, the output of particular circuit does not depend upon any past inputs or
outputs i.e. the output signals of combinational circuits are not fedback to the input of the
circuit. Moreover, in a combinational circuit, for a change in the input, the output appears
immediately, except for the propagation delay through circuit gates.

The combinational circuit block can be considered as a network of logic gets that accept
signals from inputs and generate signals to outputs. For m input variables, there are 2m

possible combinations of binary input values. Each input combination to the combinational
circuit exhibits a distinct (unique) output. Thus a combinational circuit can be discribed by n
boolean functions, one for each input combination, in terms of m input variables with n is
always less than or equal to 2m. [n < 2m].

Thus a combinational circuit performs a specific information processing operation which
is specified by Boolean functions.

n < 2m represent the condition, if in a particular application there are some unused input
combinations. For example we are using NBCD codes, the six combinations (1010, 1011, 1100,
1101, 1110 and 1111) are never used. So with four input variables (⇒m = 4) we are using only
10 i/p combinations ⇒ 10 o/ps instead of 24 = 16.

The digital systems perform a member of information processing tasks. The basic
arithmatic operations used by digital computers and calculators are implemented by combi-
national circuits using logic gets. We proceed with the implementation of these basic functions
by first looking the simple design procedure.

4
CHAPTER

COMBINATIONAL LOGIC

141

142 Switching Theory

Combinational circuit Design Procedure
It involves following steps :

Step 1 : From the word description of the problem, identify the inputs and outputs and
draw a block diagram.

Step 2 : Make a truth table based on problem statement which completely describes the
operations of circuit for different combinations of inputs.

Step 3 : Simplified output functions are obtained by algebric manipulation, k-map method
or tabular method.

Step 4 : Implement the simplified expression using logic gentis.
To explain the procedure, let us take an example that we have already been used in

chapter 2.
Example: A TV is connected through three switches. The TV becomes ‘on’ when atleast

two switches are in ‘ON’ position; In all other conditions, TV is ‘OFF’.
Solution. Step I : The TV is connected with 3 switches; thus there are three inputs to

TV, represented by variables say A, B and C. The o/p of TV is represented by variable say, F.
The block diagram is shown in Fig. 4.1 :

x
y
z

Combinationa l
C ircu it

Inpu ts F-ou tpu t

Fig. 4.1

Step 2. Truth Tables

TV switches ← INPUTS OUTPUTS

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

0 → switch off

1 → switch on

It means for the input combinations in which there are two or more 1's, the output F
= 1 (TV is ON) and for rest combinations, output F = 0 (TV is OFF).

Step 3 : In general, in simplifying boolean functions upto
four variables, the best method is K-map technique. Thus,
using a 3 variable K-map, we can simplify the function obtained
in step II.

1

11 1

00 01 11 10

1

0

BC
A

Combinational Logic 143

We get F = AB + AC + BC

We can observe that if the velue of any two variables is equal to 1, the output is equal to 1.
Step IV. For implementation we need three ‘AND’ gates and one ‘OR’ gate as shown in

Fig. 4.2.
A

B

C
F = A B + AC + BC

AB

AC

BC

Fig. 4.2

4.1 ARITHMATIC CIRCUITS
The logic circuits which are used for performing the digital arithmatic operations such

as addition, subtraction, multiplication and division are called ‘arithmatic circuits’.

4.1.1 Adders
The most common arithmetic operation in digitel systems is the addition of two binary

digits. The combinational circuit that performs this operation is called a half-adder.

Half Adder
1. Fig. 4.3 shows a half adder (HA).
It has two inputs A and B. that are two 1-bit members, and

two output sum (S) and carry (C) produced by addition of two bits.
2. Truth Table :

Inputs Outputs

A B S C

0 0 0 0
0 1 1 0

1 0 1 0
1 1 0 1

The sum output is 1 when any of inputs (A and B) is 1 and the carry output is 1 when
both the inputs are 1.

3. Using a two variable k-map, separately for both outputs S and C.

1

1

0 1

1

0

B
A

For ‘S ’

1

1

0 1

1

0

B
A

For ‘C ’

S = AB' + A'B C = A'B
= A ⊕ B.

HA
A

B

S

C

Fig. 4.3 Half Adder

144 Switching Theory

4. Logical Implementation.

(i) Using Basic gates (as shown in Fig. 4.4(a)).

S = AB + A B′′

C = AB

A B

Fig. 4.4 (a)

(ii) Using XOR gate as shown in Fig. 4.4 (b).

A
B

S = A B = AB + A B⊕ ′ ′

C = AB

Fig. 4.4 (b)

Implementation using only NAND or only NOR gates is left as an exercise.

Full Adder
Full adder is a combinational circuit that performs the addition of three binary digits.

1. Fig. 4.5 shows a full adder (FA). It has three
inputs A, B and C and two outputs S and Co
produced by addition of three input bits. Carry
output is designated Co just to avoid confu-
sion between with i/p variable C.

2. Truth Table : The eight possible combinations of three input variables with their
respective outputs is shown. We observe that when all the three inputs are 1, the
sum and carry both outputs, are 1.

Inputs Output

A B C S C0

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

A

B

S

C 0FA

C

Fig. 4.5 Full adder

Combinational Logic 145

3. Using a three variable map for both outputs.

1

11

1

00 01 11 10

1

0

BC
A

For ‘S ’

1

11 1

00 01 11 10

1

0

BC
A

For ‘C ’0

S = ABC + AB'C' + A'BC' + A'B'C and C0 AB + AC + BC.

4. Logical Implementation. (i) Using basic gates as shown in Fig. 4.6.

S

C

A B C

Fig. 4.6

(ii) A ‘Full Adder’ can also be implemented using two half adders and an ‘OR’ Gate as
shown in Fig. 4.7

The Sum S = ABC + AB'C' + A'BC' + A'B'C

= ABC + A'B'C + AB'C' + A'BC'

= C (AB + A'B') + C' (AB' + A'B)

= C (AB' + A'B)' + C' (AB' + A'B)

= (A ⊕ B) ⊕ C

and the carry C0 = AB + AC + BC

= AB + C (A + B)

= AB + C (A + B) (A + A') (B + B')

= AB + C [AB + AB' + A'B]

= AB + ABC + C (AB' + A'B)

= AB (1 + C) + C (A ⊕ B)

= AB + C (A ⊕ B)

146 Switching Theory

⇒ S = (A ⊕ B) ⊕ C and C0 = AB + C (A ⊕ B)

A
B

HA1 HA2

S

C 0
C

Fig. 4.7 Implementation of Full Adder.

Block Diagram representation of a full adder using two half address :

C

A

B

HA1

S1

C 1

HA2

S2

C 2

Cout

Sum

S1 and C1 are outputs of first half adder (HA1)

S2 and C2 are outputs of second half adder (HA2)

A, B and C are inputs of Full adder.

Sum and covt are outputs of full adder.

4.1.2 Subtractors
The logic circuits used for binary subtraction, are known as ‘binary subtractors’.

Half Subtractor : The half subtractor is a combinational circuit which is used to perform
the subtraction of two bits.

1. Fig. 4.8 shows a half subtractor. (HS)

It has two inputs, A (minered) and B (subtratend) and
two outputs D (difference) and B0 (Borrow). [The sym-
bol for borrow (B0) is taken to avoid confusion with
input variable B] produced by subtractor of two bits.

2. Truth Table

The difference output is 0 if A = B and 1 is A ≠ B; the borrow output is 1 whenever
A < B. If A < B, the subtraction is done by borrowing 1 from the next higher order
bit.

Inputs Outputs

A B D B0

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

HS
A

B

D

B

Fig. 4.8 Half subtractor

Combinational Logic 147

3. Using a two variable map, for outputs D and B.

1

1

0 1

1

0

B
A

‘D ’

1

0 1

1

0

B
A

‘B ’0

D = AB' + A'B B0 = A'B

= A ⊕ B

4. Logical Implementation shwon in Fig. 4.9

(a) Using Basic gates (b) using XOR gate

D

A B

B0

A

B
D

B 0

Fig. 4.9 (a) Basic gate implementation Fig. 4.9 (b) X-OR gate implementation
half subtractor. of half subtactor

Full subtractor
Full subtractor is a combinational circuit that performer the subtraction of three binary

digits.

1. Fig. 4.10 shows a full subtractor (FS).

It has three inputs A, B and C and two outputs D
and B0. produced by subtraction of three input bits.

2. Truth Table

The eight possible combinations of three input variables with there respective
outputs is shown. We observe that when all the three inputs are 1, the diffrence
and borrow both outputs are 1.

Inputs Output

A B C B0 D

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

A

B

S

B0FS

C

Fig. 4.10 Full subtractor.

148 Switching Theory

3. Using a three variable map for both outputs.

1

11

1

00 01 11 10

1

0

BC
A

For ‘D ’

1

1

1 1

00 01 11 10

1

0

BC
A

For ‘B ’0

D = ABC + AB'C' + A'BC' + A'B'C, B0 = A'B + A'C + BC

D = ABC + AB′C′ + A′BC′ + A′B′C
4. Logical implementation—

(i) Using basic gates : Left as an exercise.

(ii) A ‘full subtractor’ can also be implemented using two ‘half subtractors’ and an
 ‘OR’ gate as shwon in Fig. 4.11.

The difference ‘D’ = ABC + AB'C' + A'BC' + A'B'C

= ABC + A'B'C + AB'C' + A'BC'

= C (AB + A'B') + C' (AB' + A'B)

= C (AB' + A'B)' + C' (AB' +A'B)

= C (A ⊕ B)' + C' (A ⊕ B)

= (A ⊕ B) ⊕ C

and the borrow B0 = A'B + A'C + BC

= A'B + C (A' + B)

= A'B + C (A' + B) (A + A') (B + B')

= A'B + C [A'B + AB + A'B']

= A'B + A'BC + C (AB + A'B')

= A'B (C + 1) + C (A ⊕ B)'

= A'B + C (A ⊕ B)'

⇒ D = (A ⊕ B) ⊕ C and B0 = A'B + C (A ⊕ B)'

A
B

HS1

HS2

D

B0

C

Fig. 4.11

Block Diagram Representation of a full subtractor using two half subtractors :

Combinational Logic 149

C

A

B

HS 1

D 1

Bo 1

HS2

D 2

Bo 2

Bout

D iffe rence

Fig. 4.11 (a)

D1 and B01 are outputs of first half subtractor (HSI)

D2 and B02 are outputs of second half subtractor (HS2)

A, B and C are inputs of full subtractor.

Difference and Bovt are outputs of full subtractor.

4.1.3 Code Converters
In the previous study of codes, coding was defined as the use of groups of bits to

represent items of information that are multivalued. Assigning each item of information a
unique combination of bits makes a transformation of the original information. This we
recognize as information being processed into another form. Moreover, we have seen that
there are many coding schemes exist. Different digital systems may use different coding
schemes. It is sometimes necessary to use the output of one system as the input to other.
Therefor a sort of code conversion is necessary between the two systems to make them
compatible for the same information.

‘A code converter is a combinational logic circuit that changes data presented in one type
of binary code to another type of binary code.’ A general block diagram of a code converter
is shown in Fig. 4.12.

Code
ConverterCode X Code Y

Fig. 4.12 Code conerter

To understand the design procedure; we will take a specific example of 4-bit Binary to
Gray code conversion.

1. The block diagram of a 4-bit binary to gray code converter is shown in Fig. 4.13.

4-bit
b inary
input

B inary
to

G ray
Code

Converter

B 3

B2

B1

B0

G 3

G 2

G 1

G 0

4-bit
G ary
Code
O utpu t

Fig. 4.13

If has four inputs (B3 B2 B1 B0) representing 4-bit binary numbers and four outputs
(G3 G2 G1 G0) representing 4-bit gray code.

150 Switching Theory

2. Truth table for binary to gray code converters.

Binary Inputs Gray code Outputs

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

3. Now we solve all the gray outputs distantly with respect to binary inputs From the
truth table; the logic expressions for the gray code outputs can be written as

G3 = S (8, 9, 10, 11, 12, 13, 14, 15)
G2 = Σ (4, 5, 6, 7, 8, 9, 10, 11)
G1 = Σ (2, 3, 4, 5, 10, 11, 12, 13)
G0 = Σ (1, 2, 5, 6, 9, 10, 13, 14).

The above expressions can be simplified using K-map

Map for G3:

From the octet, we get

G3 = B3

Map for G2:

From the two quads, we get

G2 = B3' B2 + B3 B2'

= B3 ⊕ B2.

1 11 1

00 01 11 10

01

00

B B1 0

B B3 2

1 11 111

10

1 11 1

00 01 11 10

01

00

B B1 0

B B3 2

1 11 1

11

10

Combinational Logic 151

Map for G1:

From the two quads, we get

G1 = B2 B1' + B2' B1

= B2 ⊕ B1

Map for G0:

From the two quads, we get

G0 = B1'B0 + B1B0'

= B1 ⊕ B0.

4. Now the above expressions can be implemented using X-OR gates to yield the
disired code converter circuit shown in Fig. 4.14.

B0

B1

B2

B3

G0

G1

G2

G3
Binary
Inpu t G ray

O utpu t

Fig. 4.14

Let us see one more example of XS-3 to BCD code converter.

1. The block diagram of an XS-3 to BCD code converter is shown in Fig. 4.15.

It has four inputs (E3, E2, E1, E0) representing 4 bit XS-3 number and four outputs
(B3B2 B1 B0) representing 4-bit BCD code.

4 bit
XS-3
Inpu t

Excess-3
to

BCD
code

converte r

E 3

E2

E1

E0

B3

B2

B1

B0

4-bit
BCD
Coded
O utpu t

Fig. 4.15

2. Truth Table for XS-3 to BCD code converter.

XS-3 codes are obtained from BCD code by adding 3 to each coded number. Moreo-
ver 4 binary variables may have 16 combinations, but only 10 are listed. The six
not listed are don’t care-combinations (since in BCD codes, we use only to members

1

1

1

1

00 01 11 10

01

00

B B1 0

B B3 2

1

1

1

1

11

10

1 1

1 1

00 01 11 10

01

00

B B1 0

B B3 2

1 1

1 1

11

10

152 Switching Theory

viz. 0, 1, 2,9). Since they will never occur, we are at liberty to assign to the
output variable either a 1 or a 0, whichever gives a simpler circuit. In this particu-
lar example, the unused i/o combinations are listed below the truth table.

Min Excess-3 BCD Decimal
Terms Inputs Outputs Equivalent

E3 E2 E1 E0 B3 B2 B1 B0

m3 0 0 1 1 0 0 0 0 0
m4 0 1 0 0 0 0 0 1 1
m5 0 1 0 1 0 0 1 0 2
m6 0 1 1 0 0 0 1 1 3
m7 0 1 1 1 0 1 0 0 4
m8 1 0 0 0 0 1 0 1 5
m9 1 0 0 1 0 1 1 0 6
m10 1 0 1 0 0 1 1 1 7
m11 1 0 1 1 1 0 0 0 8
m12 1 1 0 0 1 0 0 1 9

Unused I/Ps Outputs
m0 0 0 0 0 x x x x
m1 0 0 0 1 x x x x
m2 0 0 1 0 x x x x
m13 1 1 0 1 x x x x
m14 1 1 1 0 x x x x
m15 1 1 1 1 x x x x

* XS-3 is also a class of BCD codes.

3. Now we solve all the BCD outputs. From the truth table, the logic expressions for
the BCD coded outputs can be written as :

B3 = Σ (m11, m12), d (m0, m1, m2, m13, m14, m15)

B2 = Σ (m7, m8, m9, m10), d (m0, m1, m2, m13, m14, m15)

B1 = Σ (m5, m6, m9, m10), d (m0, m1, m2, m13, m14, m15)

B0 = Σ (m4, m6, m8, m10, m12), d (m0, m1, m2, m13, m14, m15).

These expressions can be simplified using k-map →

1

00 01 11 10

01

00

E E1 0

E E3 2

1 XX X11

10

X X X

Map for B 3→

1

00 01 11 10

01

00

E E1 0

E E3 2

1

XX X11

10

X X X

Map for B 2→

1 1

⇒ B3 = E3 E2 + E3E1E0 ⇒ B2 = E2' E0' + E2 E1 E0

Combinational Logic 153

1

00 01 11 10

01

00

E E1 0

E E3 2

1

X X11

10

X X X

Map for B 3→

1

00 01 11 10

01

00

E E1 0

E E3 2

1

XX X11

10

X X X

Map for B 2→

1

1

1

1

1

⇒ B1 = E1' E0 + E1 E0' ⇒ B0 = E0'

= E1 ⊕ E0

⇒ B3 = E3 E2 + E3 E1 E0

B2 = E2' E00' + E2 E1 E0

B1 = E1 ⊕ E0

B0 = E0'

4. The expressions for BCD outputs (B3 B2 B1 B0) can be implemented for terms of
inputs (E3 E2 E1 E0) to form a XS-3 to BCD code converter circuit.

The implementation is left as an exercise.

4.1.4 Parity Generators and Checkers
When digital date is transmitted from one location to another, it is necessary to know

at the receiving end, wheather the received data is free of error. To help make the transmis-
sion accurate, special error detection methods are used.

To detect errors, we must keep a constant check on the data being transmitted. To check
accuracy we can generate and transmit an extra bit along with the message (data). This extra
bit is known as the parity bit and it decides wheather the data transmitted is error free or
not. There are two types of parity bits, namely even parity and odd parity that we have
discussed in chapter 1 under error detecting codes.

Fig. 4.16 shows an error detecting circuit using a parity bit.

ABC

Error
Detecto r

P

A B C

Parity b it
G enerato r

Erro r
A larm

A

B

C

Data

A

B

C

Data

Parity C hecker

Inpu ts Transm iss ion O utpu ts

Parity b it

Fig. 4.16

154 Switching Theory

In this system three parallel bits A, B and C and being transmitted over a long distance.
Near the input they are fed into a parity bit generator circuit. This circuit generates what
is called a parity bit. It may be either ever or odd. For example, if it is a 3-bit even parity
generator, the parity bit generated is such that it makes total member of 1s even. We can
make a truth table of a 3-bit even parity generator circuit.

Truth Table for a 3-bit even parity generator.

Inputs Data Output
Even parity bit

A B C P

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Next, the truth table is converted to a logic circuit shown in Fig. 4.17.

P = A'B'C + A'BC' + AB'C' + ABC
= A' (B'C + BC') + A (B'C' + BC)
= A' (B ⊕ C) + A (B ⊕ C)
= A' (B ⊕ C) + A (B ⊕ C)'
= A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C = A ⊕ B ⊕ C.

The generated parity bit is transmitted with the data and near the output it is fed to the
error detector (parity checker) circuit. The detector circuit checks for the parity of transmitted
data. As soon as the total number of 1’s in the transmitted data are found ‘odd’ it sounds an alarm,
indicating an error. If total member of 1's are even, no alarm sounds, indicating no error.

In above example we are transmitting 4 bits. (3 bits of message plus 1 even parity bit).
So, it is easy to understand that. Error detector is nothing but a 4 bit even-parity checker
circuit. Fig. 4.18 (a) shows a truth table of a 4 bit even parity checker circuit.

Inputs Outputs
Transmitted Data Parity error

with parity bit check

A B C P E
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0

A
B
C

Parity

b it
P

3-bit even parity generator
c ircuit

Fig. 4.17

(Contd.)

Combinational Logic 155

0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Fig. 4.18 (a)

Now below : We convert this truth table into logic circuit shown in Fig. 4.18(b).

E = A'B'C'P + A'B'CP' + A'BC'P' + A'BCP +

AB'C'P' + AB'CP + ABC'P + ABCP'

= A'B' (C ⊕ P) + A'B (C⊕ P)' + AB' (C⊕ P)' + AB (C⊕ P)

= (C ⊕ P) (A ⊕ B)' + (C ⊕ P)' (A ⊕ B)

= (A ⊕ B) ⊕ (C ⊕ P)

A

B

C

D

E (Parity Error Check)

Fig. 4.18 (b) 4-bit even parity checker.

If E = 1, Alarm sounds means error.
If E = 0, No alarm sounds means no error.
Now, it is possible to implement the parity generator with the circuit of parity checker.

If the input P is connected to logic-0, causing the value of C to pass through the gate
inchanged. (because C ⊕ 0 = C). The advantage of this is that the same circuit can be used
for both parity generation and checking.

4.2 MSI AND LSI CIRCUITS
When designing logic circuits, the “discrete logic gates”; i.e., individual AND, OR, NOT

etc. gates, are often neither the simplest nor the most economical devices we could use.
There are many standard MSI (medium scale integrated) and LSI (large scale integrated)
circuits, or functions available, which can do many of the things commonly required in logic
circuits. Often these MSI and LSI circuits do not fit our requirements exactly, and it is often
necessary to use discrete logic to adapt these circuits for our application.

However, the number and type of these LSI and VLSI (very large scale integrated)
circuits is steadily increasing, and it is difficult to always be aware of the best possible circuits
available for a given problem. Also, systematic design methods are difficult to devise when the

156 Switching Theory

types of logic device available keeps increasing. In general the “best” design procedure
is to attempt to find a LSI device which can perform the required function, or
which can be modified using other devices to perform the required function. If
nothing is available, then the function should be implemented with several MSI devices. Only
as a last option should the entire function be implemented with discrete logic gates. In fact,
with present technology, it is becoming increasingly cost-effective to implement a design as
one or more dedicated VLSI devices.

When designing all but the simplest logic devices, a “top-down” approach should be
adopted. The device should be specified in block form, and attempt to implement each block
with a small number of LSI or MSI functions. Each block which cannot be implemented
directly can be then broken into smaller blocks, and the process repeated, until each block
is fully implemented.

Of course, a good knowledge of what LSI and MSI functions are available in the
appropriate technology makes this process simpler.

4.2.1 The Digital Multiplexer
One MSI function which has been available for a long time is the digital selector, or

multiplexer. It is the digital equivalent of the rotary switch or selector switch (e.g., the
channel selector on a TV set). Its function is to accept a binary number as a “selector input,”
and present the logic level connected to that input line as output from the data selector.

A digital multiplexer (MUX) is a combinational circuits that selects one input out of
several inputs and direct it to a single output. The particular input selection is controlled by
a set of select inputs. Fig. 4.19 shows block diagram of a digital multiplexer with n inputs
lines and single output line.

For selecting one out of n input, a set of m select
inputs is required where

n = 2m

On the basis of digital (binary) code applied at the select
inputs, one output of n data sources is selected. Usually, an
enable (or strobe) input (E) is built-in for cascading purpose.
Enable input is generally active-low, i.e., it performs its in-
tended operation when it is low (logic).

Note. 16:1 are the largest available ICs, therefore for
larger input requirements there should be provision for
expansion. This is achieved through enable/stroble input
(multiplexer stacks or trees are designed).

A circuit diagram for a possible 4-line to 1-line data selector/multiplexer (abbreviated as
MUX for multiplexer) is shown in Fig. 4.20. Here, the output Y is equal to the input I0, I1,
I2, I3 depending on whether the select lines S1 and S0 have values 00, 01, 10, 11 for S1 and
S0 respectively. That is, the output Y is selected to be equal to the input of the line given by
the binary value of the select lines S1S0.

The logic equation for the circuit shown in Fig. 4.20 is:

Y = I S S I S S I S S I S S0 1 0 1 1 0 2 1 3 4 1 0.+ + +
This device can be used simply as a data selector/multiplexer, or it can be used to

perform logic functions. Its simplest application is to implement a truth table directly; e.g.,

Fig. 4.19 Block diagram of the
digital multiplexer.

Combinational Logic 157

with a 4 line to 1 line MUX, it is possible to implement any 2-variable function directly, simply
by connecting I0, I1, I2, I3 to logic 1 in logic 0, as dictated by a truth table. In this way, a
MUX can be used as a simple look-up table for switching functions. This facility makes the
MUX a very general purpose logic device.

Fig 4.20 A four-line to 1-line multiplexer

Example. Use a 4 line to 1 line MUX to implement the function shown in the following
truth table (Y = A.B + A.B).

Fig. 4.21 A 4-line to 1-line MUX implementation of a function of 2 variables

Simply connecting I0 = 1, I1 = 0, I2 = 0, I3 = 1, and the inputs A and B to the S1 and S0
selector inputs of the 4-line to 1-line MUX implement this truth table, as shown in Fig. 4.21.

The 4-line to 1-line MUX can also be used to implement any function of three logical
variables, as well. To see this, we need note only that the only possible functions of one
variable C, are C, C, and the constants 0 or 1. (i.e., C, C , C + C = 1, and 0). We need only
connect the appropriate value, C, C , 0 or 1, to I0, I1, I2, I3 to obtain a function of 3 variables.
The MUX still behaves as a table lookup device; it is now simply looking up values of another
variable.

Example. Implement the function

Y (A, B, C) = A.B.C + A.B.C + A.B.C + A.B.C

Using a 4-line to 1-line MUX.

Here, again, we use the A and B variables as data select inputs. We can use the above
equation to construct the table shown in Fig. 4.22. The residues are what is “left over” in each
minterm when the “address” variables are taken away. To implement this circuit, we connect
I0 and I3 to C, and I1 and I2 to C , as shown in Fig. 4.22.

158 Switching Theory

Fig. 4.22 A 4-line to 1-line MUX implementation of a function of 3 variables

In general a 4 input MUX can give any function of 3 inputs, an 8 input MUX can give
any functional of 4 variables, and a 16 input MUX, any function of 5 variables.

Example. Use an 8 input MUX to implement the following equation:

Y = A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D
 + A.B.C.D + A.B.C.D

Again, we will use A, B, C as data select inputs, or address inputs, connected to S2, S1
and S0, respectively.

Fig. 4.23 An 8-line to 1-line MUX implementation of a function of 4 variables

Values of the address set A, B, C with no residues corresponding to the address in the
above table must have logic value 0 connected to the corresponding data input. The select
variables A, B, C must be connected to S2, S1 and S0 respectively. A circuit which implements
this function is shown in Fig. 4.23.

This use of a MUX as a “table look up” device can be extended to functions of a larger
number of variables; the MUX effectively removes the terms involving the variables assigned
to its select inputs from the logic expression. This can sometimes be an effective way to
reduce the complexity of implementation of a function. For complex functions, however, there
are often better implementations, as we use PLDs (see chapter 5).

Although it is obvious how the function shown in Fig. 4.20 can be extended a 2n line
to 1 line MUX, for any n, in practice, about the largest devices available are only to 16 line
to 1 line functions. It is possible to use a “tree” of smaller MUX’s to make arbitrarily large
MUX’s. Fig. 4.24 shows an implementation of a 16 line to 1 line MUX using five 4 line to
1 line MUX’s.

Combinational Logic 159

Fig. 4.24 A 16-line to 1-line MUX made from five 4-line to 1-line MUX’s

4.2.2 Decoders (Demultiplexers)
Another commonly used MSI device is the decoder. Decoders, in general, transform a set

of inputs into a different set of outputs, which are coded in a particular manner; e.g., certain
decoders are designed to decode binary or BCD coded numbers and produce the correct output
to display a digit on a 7 segment (calculator type) display. Decoders are also available to
convert numbers from binary to BCD, from binary to hexadecimal, etc.

Normally, however, the term “decoder” implies a device which performs, in a sense, the
inverse operation of a multiplexer. A decoder accepts an n digit number as its n “select” inputs
and produces an output (usually a logic 0) at one of its possible outputs. Decoders are usually
referred to as n line to 2n line decoders; e.g. a 3 line to 8 line decoder. This type of decoder
is really a binary to unary number system decoder. Most decoders have inverted outputs, so
the selected output is set to logic 0, while all the other outputs remain at logic 1. As well, most
decoders have an “enable” input E , which “enables” the operation of the decoder—when the E
input is set to 0, the device behaves as a decoder and selects the output determined by the
select inputs; when the E input is set to 1, the outputs of the decoder are all set to 1. (The
bar over the E indicates that it is an “active low” input; that is, a logic 0 enables the function).

160 Switching Theory

The enable input also allows decoders to be con-
nected together in a treelike fashion, much as we saw for
MUX’s, so large decoders can be easily constructed from
smaller devices. The enable input also allows the decoder
to perform the inverse operation of a MUX; a MUX se-
lects as output one of 2n inputs, the decoder can be used
to present an input to one of 2n outputs, simply by con-

necting the input signal to the E input; the signal at the
selected output will then be the same as the input at E —
this application is called “demultiplexing.” The
demultiplexer (DEMUX) performs the reverse operation
of a multiplexer. A demultiplexer is a circuit that accepts
single input and transmit it over several (one of 2n pos-
sible) outputs.

In the block diagram (Fig. 4.25) a demultiplexer, the number of output lines is n and the
number of select lines is m.

where n = 2m

One the basis of select input code, to which output the data will be transmitted is
determined. There is an active-low (low-logic) enable/data input. The output for these devices
are also active-low.

Note. 4-line to 16-line decoders are the largest available circuits in ICs.

A typical 3 line to 8 line decoder with an enable input behaves according to the following
truth table, and has a circuit symbol as shown in Fig. 4.26.

Fig. 4.26 An 3-line to 8-line decoder

Note that, when the E input is enabled, an output of 0 is produced corresponding to each
minterm of S2, S1, S0. These minterm can be combined together using other logic gates to
form any required logic function of the input variables. In fact, several functions can be
produced at the same time. If the selected output was a logic 1, then the required minterms
could simply be ORed together to implement a switching function directly from its minterm
form. Using de Morgans theorem, we can see that when the outputs are inverted, as is
normally the case, then the minterm form of the function can be obtained by NANDing the
required terms together.

Example. An implementation the functions defined by the following truth table using a
decoder and NAND gates is shown in Fig. 4.27.

Fig. 4.25 Block diagram of the
demultiplexer/decoder

Combinational Logic 161

Fig. 4.27

IMPLEMENTATION EXAMPLES OF COMBINATIONAL LOGIC DESIGN USING
MUX/DEMUX

We have already seen how to implement combinational circuits using MUX/DEMUX. The
standard ICs available for multiplexers are 2:1, 4:1, 8:1 and 16:1. The different digital ICs are
given in appendix B, but for sake of convenience some of the MUX/DEMUX ICs are given
here in Tables A and B.

Table A: Standard multiplexer ICs

IC No. Description Output

74157 Quad. 2:1 Multiplexer Same as input

74158 Quad 2:1 MUX Inverted input

74153 Dual 4:1 MUX Same as input

74352 Dual 4:1 MUX Inverted input

74151A 8:1 MUX Complementary outputs

74152 8:1 MUX Inverted input

74150 16:1 MUX Inverted input

Table B: Standard Demultiplexer/Decoder ICs

IC No. Description Output

74139 Dual 1:4 Demultiplexer Inverted input
(2-line-to-4-line decoder)

74155 Dual 1:4 Demultiplexer 1Y-Inverted I/P
(2-line-to-4-line decoder) 2Y-Same as I/P

74138 1:8 Demultiplexer Inverted I/P

(3-line-to-8-line decoder)

74154 1:16 Demultiplexer Same as input

(4-line-to-16-line decoder)

When using the multiplexer as a logic element either the truth table or one of the
standard forms of logic expression must be available. The design procedure for combinational
circuits using MUX are as follows:

162 Switching Theory

STEP 1: Identify the decimal number correspond-
ing to each minterm in the expression. The input lines
corresponding to these numbers are to be connected to
logic 1 (high).

STEP 2 : All other input lines except that used in
step 1 are to be connected to logic 0 (low).

STEP 3 : The control inputs are to be applied to
select inputs.

Example. Implement the following function with
multiplexer.

Y = F (A, B, C, D) = Σm (0, 1, 3, 4, 8, 9, 15)

Solution. STEP 1 : The input lines correspond-
ing to each minterms (decimal number) are to be con-
nected to logic 1.

Therefore input lines 0, 1, 3, 4, 8, 9, 15 have to
be connected to logic 1.

STEP 2 : All other input lines except 0, 1, 3, 4, 8,
9, 15 are to be connected to logic 0.

STEP 3 : The control inputs A, B, C, D are to be applied to select inputs.
Note: Although the given procedure is simple to implement but the 16 to 1 multiplexers are

the largest available ICs, therefore to meet the larger input needs there should be provision for
expansion. This is achieved with the help of enable/stroke inputs and multiplexer stacks or trees are
designed.

Example. Implement the following function with a 4×1 multiplexer.

Y = F (A, B, C) = Σm (1, 3, 5, 6)

Solution. Given Y = F (A, B, C) = Σm (1, 3, 5, 6)

= A BC + ABC + ABC + ABC
We use the A and B variables as data select inputs. We can use the above equation to

construct the table shown in Fig. 4.28. The residues are what is “left over” in each minterm
when the “address” variables are taken away.

Input “Address” Other variables
(residues)

I0 A B C
I1 AB C
I2 AB C
I3 AB C

Fig. 4.28 A 4-line to 1-line MUX implementation of a function of 3 variables.

To implement this circuit, we connect I0, I1 and I2 to C and I3 to C as shown in Fig. 4.28.

Example. Using four-input multiplexer, implement the following function

Y = F (A, B, C) = Σm (0, 2, 3, 5, 7)

Control variables A, B.

I

I

I
I

0

1

2

3

Y

C

1

C

C
S1 S0

BA

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Y

S3 S 1

CA

S 2

B

S0

D

16 : 1
M UX

Log ic 1 Log ic 0

E

(M SB) (LSB)

Combinational Logic 163

Solution. Given Y = F (A, B, C) = Σm (0, 2, 3, 5, 7)

= ABC + ABC + ABC + ABC + ABC

We can use the above equation to construct the table shown in Fig. 4.29. The residues
are what is “left over” in each minterm when the “address/control” variables are taken away.

Input “Address” Other variables
(residues)

I0 A B C
I1 AB C+ C = 1
I2 AB C
I3 AB C

Fig. 4.29 A 4-line to 1-line MUX implementation of a function of 3 variables

To implement this function, we connect I0 to C , I1 to 1 and I2 and I3 to C, as shown
in Fig. 4.29.

Example. Design a full adder using 8:1 multiplexer.

Solution. The truth table of a full adder is given as

A B C S CF

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S (A, B, C) = A BC + ABC + AB C + ABC = Σ m (, , ,)1 2 4 7

CF (A, B, C) = ABC + ABC + ABC + ABC = (3, 5, 6, 7)Σm

The implementation for summation expression is

Step 1: The input lines corresponding to 1, 2, 4, 7 are to be connected to logic 1.

Step 2: Other input lines are to be connected to logic 0.

Step 3: Control inputs A, B, C are to be applied to select inputs. Fig. 4.30 A.

Similarly for carry expression.

Step 1: The input lines corresponding to 3, 5, 6, 7 are to be connected to logic 1.

Step 2: Other input lines are to be connected to logic 0.

Step 3: Control inputs A, B, C are to be applied to select inputs. Fig. 4.30 B.

I

I

I
I

0

1

2

3

Y

C

C

C

C
S1 S0

BA

4 : 1
M UX

164 Switching Theory

0
1
2
3
4
5
6
7

S

S1

CA

S2

B

S0

8 : 1
M UX

Log ic 1 Log ic 0

0
1
2
3
4
5
6
7

C F

S1

CA

S2

B

S0

8 : 1
M UX

Log ic 1 Log ic 0

(A) (B)

Fig. 4.30 Full adder implementation using 8:1 Multiplexer.

Example. Implement a full adder with a decoder and two OR-gates.

Solution. From the previous example we note that expression for summation is given
by

S (A, B, C) = Σm (1, 2, 4, 7)

and expression for carry is given by

CF (A, B, C) = Σm (3, 5, 6, 7)

The combinational logic of full adder can be implemented with due help of 3-line to 8-
line decoder/1:8 demultiplexer as shown in Fig. 4.31.

0
1
2
3
4
5
6
7

3 × 8
decoder

LSB

M SB

S

C

B

A

Fig. 4.31 Full adder implementation using 3 × 8 decoder.

Example. A combinational circuit is defined by the following Boolean functions. Design
circuit with a decoder and external gates.

Solution. Y1 = F1(A, B, C) =A B C + AC

Y2 = F2(A, B, C) = ABC + AC

Given Y1 = A B C + AC

First we have to write the expression in minterms, if the expression is not in the form
of minterms by using (x x+ = 1)

Combinational Logic 165

Fig. 4.32 Function implementation using 3×8 decoder.

Therefore Y1 = A BC + AC

Y1 = A BC + AC (B + B)

Y1 = A BC + ABC + ABC
Y1 = Σm (0, 5, 7)

Y2 = ABC + AC

Y2 = ABC + AC (B + B)

Y2 = ABC + ABC + A BC
Y2 = Σm (1, 3, 5)

The combinational logic for the boolean function can be implemented with the help of
3-line to 8-line decoder as shown in Fig 4.32.

Example. Realise the given function using a multiplexer

Y(A, B, C, D) = ΠM (0, 3, 5, 9, 11, 12, 13, 15)

Solution. To implement the given function, first we have to express the function in
terms of sum of product. i.e.,

 Y (A, B, C, D) = Σm (1, 2, 4, 6, 7, 8, 10, 14)

Now the given function in this form can be realized as

Step 1: Input lines corresponding to 1, 2, 4, 6, 7, 8, 10, 14 are to be connected to logic 1.

Fig. 4.33 A 16-line to 1-line MUX implementation.

166 Switching Theory

Step 2: Other input lines are to be connected to logic 0.

Step 3: Control inputs A, B, C, D are to be applied to select inputs.

Example. Realize the following boolean expression using 4:1 MUX(S) only.

Z = ABC D ABCD ABCD ABCD ABC D ABCD+ + + + +
Solution. Given Z = Σm (0, 6, 8, 10, 11, 15)

To implement the given boolean expression we must have 16 input and 4 selection
inputs.

Since 4:1 mux has 4 input lines and two selection lines. Therefore we can use 4, 4:1 MUX
with their select lines connected together. This is followed by a 4:1 MUX to select one of the
four outputs. The select lines of the 4:1 MUX (final) are driven from inputs A, B. The complete
circuit is shown in Fig. 4.34.

0

1

2

3

4 : 1
M UX

C D

4

5

6

7

4 : 1
M UX

C D

8

9

10

11

4 : 1
M UX

C D

12

13

14

15

4 : 1
M UX

C D

I

I

I

I

0

1

2

3

4 : 1
M UX

A B

Log ic 0 Log ic 1

Z

S1 S 0

Fig. 4.34 A 4-line to 1-line MUX implementation of a function of 4 variable.

Combinational Logic 167

Encoder
m

Inputs
n

Inpu ts

Fig. 4.35 Block Diagram of an Encoder

4.2.3 Encoders
The encoder is another example of combi-

national circuit that performs the inverse opera-
tion of a decoder. It is disigned to generate a
diffrent output code for end input which becomes
active. In general, the encoder is a circuit with
m input lines () *m n≤ 2 (* m < 2n → If unused
input combinations occur.) and n output lines that
 concerts an active input signal into a coded output signal. In an encoder, the number of outputs
is less than the number of inputs. The block diagram of an encoder is shown in Fig. 4.35.

An example of an encoder is an octal to binary encoder. An octal to binary encoder accept
eight inputs and produces a 3-bit output code corresponding to the activated input. The truth
table for the octal to binary encoder is shown in table.

Inputs Outputs

O0 O1 O2 O3 O4 O5 O6 O7 Y2 Y1 Y0

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

It has eight inputs, one for each octal digit and three outputs that generate the corre-
sponding binary number.

The truth table shows that Y0 must be 1 whenever the input O1 or O3 or O5 or O7 is
high. Thus,

Y0 = O1 + O3 + O5 + O7
Similarly Y1 = O2 + O3 + O6 + O7 and

Y2 = O4 + O5 + O6 + O7.

Using these three expressions, the circuit can be implemented using three 4-input OR
gates as shown in Fig. 4.36.

O0 O 1 O 2 O 3 O 4 O 5 O 6 O 7

Y0

Y1

Y2

Fig. 4.36 Octal to binary encoder.

168 Switching Theory

The encoder has two limitations:

1. Only one input can be active at any given time. If two or more inputs are equal
to 1 at the same time, the O/P is undefined. For example if O2 and O5 are active
similtaneously, the o/p of encoder will be 111 that is equal to binary 7. This does
not represent binary 2 or 5.

2. The output with all O’s is generated when all inputs are ‘O’, and is also true when
O0 = ‘1’.

The first problem is taken care by a circuit, called as ‘priority encoder’. If establishes a
priority to ensure that only one input is active (High) at a given time.

The second problem is taken care by an extra line in the encoder output, called ‘valid
output indicator’ that specifies the condition that none of the inputs are active.

Priority Encoder
A priority encoder is an encoder that includes priority function. If two or more inputs

are equal to 1 at the same time, the input having the highest priority will take precedence.
To understand priority encoder, consider a 4 to 2 line encoder which gives priority to higher
subscript number input than lower subscript number. The truth table is given below.

Truth Table of 4 to 2 line priority encoder:

Inputs Outputs

D0 D1 D2 D3 Y1 Y2 V

0 0 0 0 x x 0

1 0 0 0 0 0 1

x 1 0 0 0 1 1

x x 1 0 1 0 1

x x x 1 1 1 1

The Xs are don’t care conditions. Input D3 has the highest priority, so regardless of
values of other inputs, when this input is 1, the output Y1 Y2 = 11. D2 has next priority level.
The o/p is 10 if D2 is 1, provided D3 = 0, irrespective of the values of the other two lower-
priority inputs. The o/p is 01 if D1 is 1, provided both D2 and D3 are O, irrespective of the
value of lower-priority input D0. The o/p is D0 if 00 = 1, provided all other inputs are 0.

A valid output indicator, V is set to 1, only when one or more of the inputs are equal
to 1. If all the inputs are O, V is equal to O. and the other two outputs if the circuit are not
used.

Now, simplifying using k-map the outputs can be written as :

Y1 = D2 + D3

Y2 = D3 + D1 D2'

V = D0 + D1 + D2 + D3.

The logic diagram for a 4 to 2 line priority encoder with ‘valid output indicator’ is shown
below in Fig. 4.37.

Combinational Logic 169

D 0 D 1 D 2 D 3

Y1

Y2

V

Fig. 4.37

4.2.4 Serial and Parallel Adders
In section 4.1.1 we have discussed the full-adder circuit. Full adder is a combinational

circuit that adds three binary digits. When we add two numbers of any length, the terms we
have to deal with are :

Input carry, Augend, Addend, sum and output carry. We simply start adding two binary
digits from LSB (rightmost positioned bits). At this position, the input carry is always equal
to zero. After addition, we get sum and output carry. This output carry works as the input
carry to the next higher positioned augend and addend bits. Next we add augend and addend
bits along with the input carry that again produces sum and output carry. The process repeats
upto MSB position (leftmost positioned bits).

We observe that in the process of addition we are actually adding three digits – the input
carry, the augend bit and the addend bit. And, we are getting two outputs the sum and the
output carry.

This can be illustrated by the following example. Let the 4-bits words to be added be
represented by:

A3 A2 A1 A0 = 1 1 0 1 and B3 B2 B1 B0 = 0 0 1 1.
Sign ificant P lace 4 3 2 1

Inpu t Carry 1 1 1 0

Augend W ord 1 1 0 1

Addend W ord 0 0 1 1

Sum ou tput carry 0 0 0 0

1 1 1 1

Carry-In

Carry-ou t

Now if we compare this with the full adder circuit, we can easily observe that the two
inputs (A and B) are augend and addend bits with the third input (c) as the input carry.
Similarly two outputs are sum (s) and output carry (C0).

In general, the sum of two n-bit numbers can be generated by using either of the two
methods : the serial addition and the parallel addition.

170 Switching Theory

Serial Adder
In serial addition, the addition operation is carried out bit by bit. The serial adder uses

one full adder circuit and some storage device (memory element) to hold generated output
carry. The diagram of a 4 bit serial adder is shown in Fig. 4.38.

The two bits at the same positions in augend and addend word are applied serialy to A
and B inputs of the full adder respectively. The single full adder is used to add one pair of
bits at a time along with the carry Cin. The memory element is used to store the carry output
of the full adder circuit so that it can be added to the next significant position of the nembers
in the augend and addend word. This produces a string of output bits for sum as S0, S1, S2
and S3 respectively.

A

B

C

S

C o u t

Fu ll

Adder

C ircu it

A3 A2 A1 A0

B3 B2 B1 B0

Augend word

Addend W ord

Inpu t C arry-C in
(A lways ‘O ’ a t LSB)

O

S 3 S2 S 1 S0 Sum ou tput

O utpu t Carry

Storage Device
(M em ory elem ent)

Fig. 4.38 4-bit serial adder.

Parallel Adder
To add two n-bit numbers, the parellel method uses n full adder circuits and all bits of

addend and augend bits are applied simultaneously. The output carry from one full adder is
connected to the input carry of the full adder one position to its left.

The 4-bit adder using full adder circuit is capable of adding two 4-bit numbers resulting
in a 4-bit sum and a carry output as shown in Fig. 4.39.

A 3 B 3

C 4

Co u t

S3

Fu ll
Adder

C3

A 2 B 2

C 3

S2

Fu ll
Adder

C2

A 1 B 1

C 1

S1

Fu ll
Adder

C0

A 0 B 0

C 1

S0

Fu ll
Adder

C0
C in = 0

Fig. 4.39 4-bit binary parallel adder.

The addition operation is illustrated in the following example. Let the 4-bit words to be
added be represented by A3 A2 A1 A0 = 1 0 1 0 and B3 B2 B1 B0 = 0 0 1 1.

Subscript i 3 2 1 0 ← Significant place.
Input carry Ci 0 1 0 0
Augend Ai 1 0 1 0
Addend Bi 0 0 1 1
Sum Si 1 1 0 1
Output carry Ci+1 0 0 1 0

Combinational Logic 171

In a 4-bit parallel adder, the input to each full adder will be Ai, Bi and Ci, and the outputs
will be Si and Ci+1, where i varies from 0 to 3.

In the least significant stage, A0, B0 and C0 (which is 0) are added resulting in sum S0
and carry C1. This carry C1 becomes the carry input to the second stage. Similarly, in the
second stage, A, B, and C are added resulting in S1 and C2; in the third stage, A2 B2 and C2
are added resulting in S2 and C3; in the fourth stage A3, B3 and C3 are added resulting in
S3 and C4 which is the output carry. Thus the circuit results in a sum (S3, S2, S1, S0) and
a carry output (Cout).

An alternative block diagram representation of a 4 bit binary parallel adder is shown in
Fig. 4.40.

B3 B2 B 1 B0 A3 A2 A1 A0

4-bit
b inary

para llel adder

S3 S2 S 1 S0

C inC o u t

Addend Augland

Fig. 4.40 4-bit binary parallel adder.

Propagation Delay: Though the parallel binary adder is said to generate its output
immediately after the inputs are applied, it speed of operation is limited by the carry propaga-
tion delay through all stages. In the parallel binary adder, the carry generated by the adder is
fed as carry input to (i + 1)th adder. This is also called as ‘ripple carry adder’. In such adders,
the output (Cout S3, S2, S1, S0) is available only after the carry is propogated through each of
the adders, i.e., from LSB to MSB adder through intermediate adders. Hence, the addition
process can be considered to be complete only after the carry propagation delay through adders,
which is proportional to number of stages in it; one of the methods of speeding up this process
is look-ahead carry addition, which eliminates the ripple carry delay. This method is based on
the carry generating and the carry propagating functions of the full adder.

4-bit Look-ahead Carry Generator
The look-ahead carry generator is based on the principle of looking at the lower order

bits of addend and augend if a higher order carry is generated. This reduces the carry delay
by reducing the number of gates through which a carry signal must propagate. To explain its
operation consider the logic diagram of a full adder circuit Fig. 4.41.

Augend A i

Addend B i

C i+1 (o /p carry)

S i (sum)
P i

G i

I/P
Carry

C i

Fig. 4.41 Full Adder

172 Switching Theory

We define two new intermediate output variable Pi and Gi.

Pi = Ai ⊕ Bi ; called carry propagate, and

Gi = Ai . Bi, called carry generate.

We now write the Boolean function for the carry output of each stage and substitute for
each Ci its value from the previous equations :

C1 = G0 + P0 C0

C2 = G1 + P1 C1 = G1 + P1 (G0 + P0 C0) = G1 + P1 G0 + P1 P0 C0.

C3 = G2 + P2 C2 = G2 + P2 (G1 + P1 G0 + P1 P0 C0)

= G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0.

Note that C3 does not have to wait for C2 and C1 to propagate; in fact C3 is propagated
at the same time as C1 and C2.

Next we draw the logic diagram of this 4 bit look-ahead carry generator as shown in
Fig. 4.42.

C 3

C 2

C 1

P2

G2

P1

G1

P0

G0

C 0

Fig. 4.42 4-bit look-ahead carry generator.

4-bit binary parallel adder with a look-ahead carry generator (FAST ADDER)
In the 4-bit look ahead carry generator. We have seen that all the carry outputs are

generated simultaneously with the application of Augend word, addend word and the input
carry. What is remaining are the sum outputs. From the newly defined full adder circuit of
Fig. 4.41, we notice that the sum output Si = Pi ⊕ Ci.

⇒ S0 = P0 ⊕ C0 = A0 ⊕ B0 ⊕ C0

S1 = P1 ⊕ C1 = A1 ⊕ B1 ⊕ C1

S2 = P2 ⊕ C2 = A2 ⊕ B2 ⊕ C2

S3 = P3 ⊕ C3 = A3 ⊕ B3 ⊕ C3.

Similarly carry output Ci+1 = G1 + Pi Ci

⇒ Final o/p carry ⇒ C4 = G3 + P3 C3.

Combinational Logic 173

Using the above equations, the 4-bit binary parallel adder with a look ahead carry
generator can be realized as shown in Fig. 4.43.

B3

A3 P 3

G 3

C 4

C 3

P3 S 3

O utpu t carry

B2

A2 P 2

G 2
C 2

P2 S 2

B1

A1 P 1

G 1
C 1

P3 S 1

B0

A0 P 0

G 0

P0 S 0

Inpu t
Carry

C 0 C 0

4-bit
Look-aheed

Carry
G enerato r

o f
Fig. 4.42

Fig. 4.43 Four bit binary parallel adder with look-ahead carry generator.

From the diagram, note that the addition of two 4 bit numbers can be done by a look
ahead carry generator in a 4 gate propagation time (4 stage implementation). Also, it is
important to realize that the addition of n-bit binary numbers takes the same 4-stage propa-
gation delay.

4-bit Parallel Adder/Subtractor
The 4-bit binary parallel adder/subtractor can be realized with the same circuit taking

into consideration the 2’s complement method of subtraction and the controlled inversion
property of the exclusive or gate.

The subtraction of two binary number by taking 2’s complement of the subtrahend and
adding to the minuend. The 2’s complement of the subtrahend can be obtained by adding 1
to the 1’s complement of the subtrahend.

From the example OR operation, we know when one of the input is low the output is
same as the other input and when are of the input is high the output is the complement of
the other input.

Contro l inpu t C
O ther inpu t X

Y

Y = C X' + C'X

Naturally, if C = 0, Y = X

C = 1, Y = X'

174 Switching Theory

The 4-bit binary parallel adder/subtractor circuit is shown in Fig. 4.44. that perform the
operation of both addition and subtraction. If has two four bit inputs A3 A2 A1 A0 and B3 B2
B1 B0. The control input line C, connected with the input carry of the LSB of the full adder,
is used to perform both operations.

To perform subtraction, the C (control input) is kept high. The controlled inverter pro-
duces the 1's complement of the adder (B3' B2' B1' B0'). Since 1 is given to input carry of the
LSB of the adder, it is added to the complemented addend producing 2's complement of the
addend before addition.

A3 B3 A2 B2 A1 B1 A0 B 0

C 4

S3

C 3

S2

C 2

S 1

C 1

S 0

FA FA FA FA C 0

O utpu t
Carry C→ o u t

Control
Inpu t C in

Inpu t
carry
Cin

Fig. 4.44 Bit binary parallel adder/subtractor.

Now the angend (A3A2A1A0) will be added to the 2's complement of addend (B3B2B1B0)
to produce the sum, i.e., the diffrence between the addend and angend, and Cout (output
carry), i.e. the borrow output of the 4-bit subtractor.

When the control input ‘C’ is kept low, the controlled inverter allows the addend (B3 B2
B1 B0) without any change to the input of full adder, and the input carry Cin of LSB of full
adder, becomes zero, Now the augend (A3 A2 A1 A0) and addend (B3 B2 B1 B0) are added with
Cin = 0. Hence, the circuit functions as 4-bit adder resulting in sum S3 S2 S1 S0 and carry
output Cout.

4.2.5 Decimal Adder
A BCD adder is a combinational circuit that adds two BCD digits in parallel and produces

a sum digit which is also in BCD. The block diagram for the BCD adder is shown in Fig. 4.45.
This adder has two 4-bit BCD inputs A8 A4 A2 A1 and B8 B4 B2 B1 and a carry input Cin. It
also has a 4-bit sum output S8 S4 S2 S1 and a carry output Cout. Obviously the sum output
is in BCD form. (This is why subscripts 8, 4, 2, 1 are used).

If we consider the arithmetic addition of two decimal digits in BCD, the sum output can
not be greater than 9 + 9 + 1 = 19. (Since each input digit does not exceed 9 and 1 being the
possible carry from previous stage).

Suppose we apply two BCD digits to a 4-bit binary parallel adder. The adder will form
the sum in binary and produce a sum that will range from 0 to 19. But if we wish to design
a BCD adder, it must be able to do the following.

Combinational Logic 175

1. Add two 4-bit BCD numbers using straight binary addition.

2. If the four bit sum is equal to or less than 9, the sum is in proper BCD form.

3. If the four bit sum is greater than 9 or if a carry is generated from the sum, the
sum is not in BCD form. In this case a correction is required that is obtained by
adding the digit 6 (0110) to the sum produced by binary adder.

B8 B4 B2 B 1 A8 A4 A2 A 1

S 8 S 4 S 2 S 1

Inpu t carry
(C in)

O utpu t
carry (C o u t)

Addend
BCD digit

Augend
BCD digit

Fig. 4.45 Block diagram of a BCD adder.

The table shows the results of BCD addition with needed correction.

Decimal Uncorrected Corrected
Digit BCD sum BCD sum

produced by produced by
Binary Adder. BCD Adder.

K Z8 Z4 Z2 Z1 C S8 S4 S2 S1

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1
2 0 0 0 1 0 0 0 0 1 0
3 0 0 0 1 1 0 0 0 1 1
4 0 0 1 0 0 0 0 1 0 0
5 0 0 1 0 1 0 0 1 0 1
6 0 0 1 1 0 0 0 1 1 0
7 0 0 1 1 1 0 0 1 1 1
8 0 1 0 0 0 0 1 0 0 0
9 0 1 0 0 1 0 1 0 0 1
10 0 1 0 1 0 1 0 0 0 0
11 0 1 0 1 1 1 0 0 0 1
12 0 1 1 0 0 1 0 0 1 0
13 0 1 1 0 1 1 0 0 1 1
13 0 1 1 0 1 1 0 0 1 1
14 0 1 1 1 0 1 0 1 0 0
15 0 1 1 1 1 1 0 1 0 1
16 1 0 0 0 0 1 0 1 1 0
17 1 0 0 0 1 1 0 1 1 1
18 1 0 0 1 0 1 1 0 0 0
19 1 0 0 1 1 1 1 0 0 1

U

V

|
|
|
|
|
||

W

|
|
|
|
|
||

No
Correction

Required

U

V

|
|
|
|
|
||

W

|
|
|
|
|
||

Correction
Required

176 Switching Theory

The binary numbers are listed, labled as K Z8 Z4 Z2 Z1. K is the output carry and subscript
under Z represent the weight 8, 4, 2 and 1. The first table lists the binary sums as produced
by a 4-bit binary adder. For representing them in BCD, they must appear as second table.

From the two tables it is clear that upto 9, the binary sum is same as the BCD sum,
so no correction is required. When the sum is greater than 9, the binary sum is diffrent from
BCD sum, means correction is required. Therefore, a BCD adder must include the correction
logic in its internal construction. Moreover, the circuit is required to develop a logic in its
internal construction that indicates for needed correction.

This later logic can be developed by observing the two table entries. From tables it is
clear that the correction is required when K = 1 or Z8 Z4 = 1 or Z8 Z2 = 1.

or when k = 1 or Z8 (Z4 + Z2) = 1.

K = 1, means the result is 16 or above,

Z8 Z4 =1, means the result is 12 or above and

Z8 Z2 = 1, means the result is 10 or above.

Therefore, the condition for correction can be written as :

C = K + Z8 (Z4 + Z2)

i.e., whenever C = 1, we need correction ⇒ Add binary 0110 (decimal 6) to the sum
produced by 4 bit binary adder. It also produce an output carry for the next stage. The BCD
adder can be implemented using two 4-bit binary parallel adders as shown in Fig. 4.46.

B8 B4 B2 B1 A8 A4 A2 A 1

Z 8 Z 4 Z2 Z 1

Carry
out

Addend
BCD digit

Augend BC D
digit

K C in4 -bit B inary Adder-1

B8 B 4 B2 B1 A8 A4 A2 A1

Carry
InC in4 -bit B inary Adder-2

S 8 S 4 S2 S 1

Log ic O

O utpu t
Carry (C)o u t

Carry
In

(Correction-Log ic)

C

0 1 1 0

Fig. 4.46 BCD Adder using two 4-bit binary adders along with the correction logic C.

Combinational Logic 177

Here A8 A4 A2 A1 and B8 B4 B2 B1 are the BCD inputs. The two BCD inputs with input
carry Cin are first added in the 4-bit binary adder-1 to produce the binary sum Z8, Z4, Z2, Z1
and output carry K. The outputs of adder-1 are checked to ascertain wheather the output is
greater than 9 by AND-OR logic circuitry. If correction is required, then a 0110 is added with
the output of adder-1. Now the 4-bit binary adder-2 forms the BCD result (S8 S4 S2 S1) with
carry out C. The output carry generated from binary adder-2 can be ignored, since it supplies
information already available at output carry terminal C.

4.2.6. Magnitude Comparator
A magnitude comparator is a combinational circuit designed primarily to compare the

relative magnitude of the two binary numbers A and B. Naturally, the result of this compari-
son is specified by three binary variables that indicate, wheather A > B, A = B or A < B.

The block diagram of a single bit magnitude comparator is shown in Fig. 4.47.

Sing le -bit
m agnitude

com para ted

A > B

A = B

A < B

A

B

O utpu tsInpu ts

Fig. 4.47 Block diagram of single bit magnitude comparator.

To implement the magnitude comparator the properties of Ex-NOR gate and AND gate
is used.

Fig. 4.48(a) shows an EX-NOR gate with two inputs A and B. If A = B then the output
of Ex-NOR gate is equal to 1 otherwise 0.

A

B
= 1 if a = B and

0 if A B≠

Fig. 4.48 (a)

Fig. 4.48 (b) and (c) shows AND gates, one with A and B' as inputs and another with A'
and B as their inputs.

A

B ′
= 1 if A > B

A ′
B

= 1 if A < B

Fig. 48 (b) Fig. 4.48 (c)

The AND gate output of 4.48(b) is 1 if A > B (i.e. A = 1 and B = 0) and 0 if A < B (i.e.
A = 0 and B = 1). Similarly the AND gate output of 4.48(c) is 1 if A < B (i.e. A = 0 and B =
1) and O if A > B (i.e. A = 1 and B = 0).

If the EX-NOR gate and two AND gates are combined as shown in Fig. 4.49(a), the circuit
with function as single bit magnitude comparator. For EX-NOR implementation.

A

B

Y A > B1 ⇒

Y A = B2 ⇒

Y A < B2 ⇒

Fig. 4.49 (a) Single bit magnitude comparator.

178 Switching Theory

We have used EX-OR followed by an inverter.

Truth table of a single bit magnitude comparator.

Inputs Output

A B Y1 Y2 Y3

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

It clearly shows Y1 is high when A > B.

Y2 is high when A = B

Y3 is high when A < B.

The same principle can be extended to an n-bit magnitude comparator.

4-bit Magnitude Comparator
Consider two numbers A and B, with four digits each.

A = A3 A2 A1 A0

B = B3 B2 B1 B0.

(a) The two numbers are equal if all pairs of significant digits are equal i.e. if A3 = B3,
A2 = B2, A1 = B and A0 = B0. We have seen that equality relation is generaed by
EX-NOR gate. Thus

xi = Ai . Bi = Ai Bi + Ai' Bi', i = 0, 1, 2, 3.

Where xi represents the equality of two numbers

xi = 1, if A = B.

xi = 0, otherwise.

If follows an AND operation of all variables.

⇒ (A = B) = x3 x2 x1 x0 = 1 only if all pairs are equal.

(b) To determine if A > B or A < B, we check the relative megnitude of pairs of
significant digits starting from MSB. If the two digits are equal, we compare the
next lower significant pair of digits. The comparison follows until a pair of unequal
digits are reached. If the corresponding digit of A is 1 and that of B is 0, we say
that A > B. If the corresponding digit A is 0 and that of B is 1 ⇒ A < B.

This discussion can be expressed logically as :

(A > B) = A3 B3' + x3 A2 B2' + x3 x2 A1 B1' + x3 x2 x1 A0 B0'

(A < B) = A3' B3 + x3 A2' B2 + x3 x2 A1' B1 + x3 x2 x1 Ao' Bo.

The logical implementation is shown in Fig. 4.49(b)

Combinational Logic 179

A3
B ′3
A2

B ′2
A1

B ′1
A0

B ′0

A > B

A3

B3

x3

A2

B2

x2

A1

B1

x1

A1

B1

x0

A = B

A 3′
B3

A 2′
B2

A 1′
B 1

A 0′
B0

A < B

Fig. 4.49(b) Logical implementation of or 4-bit magnitude comparator.

4.3 HAZARDS
In digital circuits it is important that undesirable glitches (spikes) on signal should not

occure. Therefore in circuit design one must be aware of the possible sources of glitches
(spikes) and ensure that the transitions in a circuit will be glitch free. The glitches (spikes)
caused by the structure of a given circuit and propagation delays in the circuit are referred
to as hazards. Hazards occur in combinational circuits, where they may cause a temporary
false-output value.

4.3.1 Hazards in Combinational Circuits
Hazards is unwanted switching transients appearing in the output while the input to

a combinational circuit (network) changes. The reason of hazard is that the different paths
from input to output have different propagation delays, since there is a finite propagation
delay through all gates. Fig. 4.50 depicts the propagation delay in NOT gate.

In the circuit analysis, dynamic behaviour is an important consideration. The propaga-
tion delay of circuit varies and depends upon two factors.

• Path of change through circuit.
• Direction of change within gates.

180 Switching Theory

Inpu t O utpu t

Inpu t

O utpu t

Time

Propagation delay

Fig. 4.50

The glitches (spikes) are momentary change in output signal and are property of circuit,
not function as depicted in Fig. 4.51.

1

0

1

0

1 0

1

1 1

0

Fig. 4.51

Hazards/Glitches (spikes) are dangerous if

• Output sampled before signal stabilizes

• Output feeds asynchronous input (immediate response)

The usual solutions are :

• Use synchronous circuits with clocks of sufficient length

• Minimize use of circuits with asynchronous inputs

• Design hazard free circuits.

Example. Show that the combinational circuit Q AB BD= + having hazards.

Solution. For Q AB BD= + ; if B and D are 1 then Q should be 1 but because of propa-
gation delays, if B changes stage then Q will become unstable for a short time, as follows :

Q

(C)
A

B

D

A
D
B

(C)
Q

H igh
H igh

G litch

Fig. 4.52 Therefore the given combinational circuit having hazards.

Combinational Logic 181

4.3.2 Types of Hazards
Two types of hazards are illustrated in Fig. 4.53.

• Static hazard

• Dynamic hazard.

1. Static 1 (0) hazard
A static hazard exists if, in response to an output

change and for some combination of propagation de-
lays, a network output may momentarily go to 0 (1)
when it should remain a constant 1 (0), we say the
network has a static 1 (0) hazard. Example of static
hazard is shown in Fig. 4.54 (a).

Example.

A

S

B

S ′

F

Static-0 hazard Static-1 hazard

A

B

S

S ′

F
Hazard

Fig. 4.54 (a)

2. Dynamic Hazard
A different type of hazard may occur if,

when the output is suppose to change from 0
to 1 (or 1 to 0), the output may change three
or more times, we say the network has a dy-
namic hazard. Example of dynamic hazard is
shown in Fig. 4.54 (b).

Example:

A

C

B1

Hazard

A

B

C

3

1

2

dynam ic hazards

B2

B3
F

Fig. 4.54 (b)

0 0

1

Static 0-hazard

0

1

Static 1-hazard

1

Fig. 4.53

0 0

1

Dynam ic hazard

1

0 0

1 1

Fig. 4.54 (b)

182 Switching Theory

4.3.3 Hazard Free Realizations
The occurrence of the hazard can be de-

tected by inspecting the Karnaugh Map of the
required function. Hazards like example (Fig.
4.52) are best eliminated logically. The Fig. 4.52
is redrawn here (Fig. 4.55).

Q AB BD= +
The Karnaugh Map of the required function is given in Fig. 4.56.

00 01 11 10
AB

D

0

1

0

0

0 0 1

111

BD

AB

Fig. 4.56 K-Map of the given circuit.

Whenever the circuit move from one product term to another there is a possibility of
momentary interval when neither term is equal to 1, giving rise to an undesirable output.
The remedy for eliminating hazard is to enclose the two minterms with another product term
that overlaps both groupings.

The covering the hazard causing the transition with a redundant product term (AD) will
eliminate the hazard. The K-Map of the hazard-free circuit will be as shown in Fig. 4.57.

00 01 11 10
AB

D

0

1

0

0

0 0 1

111

BD

AB

AD

Fig. 4.57 K-Map of the hazard-free circuit.

Therefore the hazard free Boolean equation is Q AB BD AD= + + .

The Fig. 4.58 shows the hazard free realization of circuit shown in Fig. 4.55.

Q

A

B

D

Fig. 4.58 Hazard free circuit.

Now we will discuss elimination of static hazards with examples.

Eliminating a static-1 hazard
Let the example circuit is F AC AD= + . The K-map of the circuit is given in Fig. 4.59.

Q

A

B

D

(C)

Fig. 4.55

Combinational Logic 183

00 01 11 10
AB

CD

00

01

0

1

0 1 1

111

11 1 1 0 0

10 0 000

A

C

D

B

Fig. 4.59 K-Map of the example circuit.

By inspecting Karnaugh Map of the required function, we notice the following points.

• Input change within product term (ABCD = 1100 to 1101)

g1

g2

g3

1
1

0

0

A
C

A

D

1 F

1

0

1

• Input change that spans product terms (ABCD = 1101 to 0101)

g1

g2

g3

10000
11111

00111

11111

A
C

A
D

11101 F

11000

00011
Values sam pled
on a gate delay inte rval

• Glitch only possible when move between product terms.

00 01 11 10
AB

CD

00

01

0

1

0 1 1

111

11 1 1 0 0

10 0 000

A

C

D

B

From above three points it is clear that addition of redundant prime implicants so that
all movements between adjacent on-squares remains in a prime implicant will remove
hazard.

184 Switching Theory

00 01 11 10
AB

CD

00

01

0

1

0 1 1

111

11 1 1 0 0

10 0 000

A

C

D

B

Fig. 4.60 K-Map of the hazards free circuit.

Therefore F AC AD= + becomes F AC AD CD= + + .

Note that when a circuit is implemented in sum of products with AND-OR gates or with
NAND gates, the removal of static-1 hazard guarantees that no static-0 hazars or dynamic
hazards will occur.

Eliminating a static-0 hazard
Let the example circuit is F (A C)(A D).= + + The K-Map of the circuit is given in Fig. 4.61.

00 01 11 10
AB

CD

00

01

0

1

0 1 1

111

11 1 1 0 0

10 0 000

A

C

D

B

Fig. 4.61 K-Map of the example circuit.

By inspecting Karnaugh Map of the required function, we see that occurrence of static-
0 hazard from ABCD = 1 10 to 0110. It can be remove by adding the term (C D).+

4.3.4 Essential Hazard
Similar to static and dynamic hazards in combinational circuits, essential hazards occur

in sequential circuits. Essential hazards is a type of hazard that exists only in asynchronous
sequential circuits with two or more feedbacks. Essential hazard occurs normally in toggling
type circuits. It is an error generally caused by an excessive delay to a feedback variable in
response to an input change, leading to a transition to an improper state. For example, an
excessive delay through an inverter circuit in comparison to the delay associated with the
feedback path may cause essential hazard. Such hazards cannot be eliminated by adding
reducant gates as in static hazards. To avoid essential hazard, each feedback loop must be
designed with extra care to ensure that the delay in the feedback path is long enough
compared to the delay of other signals that originate from the input terminals.

Combinational Logic 185

4.3.5 Significance of Hazards
A glitch in an asynchronous sequential circuit can cause the circuit to enter an incorrect

stable state. Therefore, the circuity that generates the next-state variables must be hazard
free. It is sufficient to eliminate hazards due to changes in the value of a single variable
because the basic premise in an asynchronous sequential circuit is that the values of both the
primary inputs and the state variables must change one at a time.

In synchronous sequential circuits the input signal must be stable within the setup and
hold times of flip-flops. It does not matter whether glitches (spikes) occur outside the setup
and hold times with respect to the clock signal.

In combinational circuits, there is no effect of hazards, because the output of a circuit
depends solely on the values of the inputs.

4.4 FAULT DETECTION AND LOCATION
Digital system may sulffer two classes of faults : temporary faults, which occur due to

noise and the non-ideal transient behaviour of switching components and second is permanent
faults. which result from component failures. The transient behaviour of switching is studied
in hazards. while permanent faults testing and diagnosis consists of the following two
subproblems.

1. The fault detection problem.

2. The fault-location problem.

The are various methods are used for the fault detection and location these are :

1. Classical method.

2. Fault table method.

3. Boolean differences method.

4. Path sensitizing method.

4.4.1 Classical Method
The process of applying tests and determining whether a digital circuit is fault free or

not is generally known as fault detection.

One way of determining whether a combinational circuit operates properly is by applying
to the circuit all possible input combinations and comparing the resultant outputs with either
the corresponding truth table or a faultless version of the same circuit. Any diviation indicates
the presence of some fault. If a known relationship exists between the various possible faults
and the deviations of output pattern then we can easily diagnose the fault and classify it
within a subset of faults whose effects on the circuit output are identical.

This classical method is generally very long, and consequently impractical. Moreover, for
most circuits the fault can be detect or even, to locate them by considerably shorter tests,
whereas by classical method there are large number of test have to be done which are
unnecessary. Such tests are referred to as either Fault detection or Fault-location tests.
These test are used for detecting the presence of a fault, locate them and diagnose it.

Assumptions about the type of digital circuit to be considered
1. It is assumed that the digital circuits under study are combinational circuits, test-

ing procedures are developed for circuits composed of loop-free interconnection of

186 Switching Theory

AND, OR NOT, NAND, and NOR gates ; that is feedback loops are not allowed in
the circuits being tested.

2. It is assumed that the response delays of all the gates element are the same.

3. Since single fault will be detected in all cases, while multiple fault may not be
detected in digital circuit so it is assumed that most circuits are reliable enough so
that the probability of occurrence of multiple faults in rather small.

Assumption about type of Fault to be considered
1. The faults considered here are assumed to be fixed or permanent or non transient

faults by which mean that without having them repaired, the fault will be perma-
nently there.

2. Most of the faults occurred in currently used circuits such as RTL, DTL, TTL, are
those which cause a wire to be (or appear logically to be) stuck at zero or stuck-
at-one (abbreviated s-a-o and s-a-1). Restricting our consideration to just this class
of faults is technically justified, since most circuit failures fall in this class, and
many other failures exhibit symptomatically identical effect.

3. A multiple fault is defined as the simultaneous occurrence of any possible combi-
nation of s-a-o and s-a-1 faults.

4.4.2 The Fault Table Method
The most classic method for constructing a set of tests to detect and locate a prescribed

list of permanent logic faults, single or multiple, in a combinational circuit is the fault table
method.

“A Fault table is a table in which there is a row for every possible test (i.e. input combi-
nation) and a column for every fault. A 1 is entered at the intersection of the ‘ith’ row and the
‘jth’ column if the fault corresponding to the ‘jth’ column can be detected by the ith test.”

Before starting with fault table method we should know detectable and undetectable
faults and a minimal complete test set of circuit.

A Fault of a combinational circuit is said to be detectable if there exists a test by which
we can judge whether or not the circuit has such a fault, otherwise, we call the fault
undetectable.

A test set of a circuit is said to be complete if it detects every fault of circuit under
consideration. A minimal complete test set of circuit is complete test set that contains a
minimum number of tests. Let on consider ‘n’ inputs to the circuit, then there are 2n number
of rows. Thus a subset of 2n rows constitute a complete test set for the circuit.

The Fault table
Let x1, x2......xn be inputs to a combinational circuit and let ‘f’ be its fault free output.

Let ‘f’ be its fault free output. Let fα denote the output of the circuit in the presence of fault
α. consider an example, the circuit shown belows in Fig. 4.62.

A
B

m
n 1

p

q

f = AB + C ′
C ′ 2

Fig. 4.62 Circuit under test.

Combinational Logic 187

Circuit to be tested
Suppose that any one of its wires m, n, p, and q may have s-a-o or s-a-1 Fault. We shall

denote s-a-0 and s-a-1 faults for wire ‘m’ as m0 and m1 respectively. Similar notation is used
for the other wires. The truth table for this circuit is shown below, where column f denotes
the fault-free output for example, columns fm0 and fm1 denotes the circuit outputs in the
presence of faults m0 and m1 on wire m, and so on.

Inputs f = (mn + q) Outputs in presence of Faults

ABC = (p +q) fm0 fn0 fp0 fq0 fm1 fn1 fp1 fq1
= AB + C1 (m = 0) (n = 0) (p = 0) (q = 0) (m = 1) (n = 1) (p = 0) (q = 1)

0 0 0 1 1 1 1 0 1 1 1 1

0 0 1 0 0 0 0 0 0 0 1 1

0 1 0 1 1 1 1 0 1 1 1 1

0 1 1 0 0 0 0 0 1 0 1 1

1 0 0 1 1 1 1 0 1 1 1 1

1 0 1 0 0 0 0 0 0 1 1 1

1 1 0 1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1 1

(Truth table for the fault-free output and output in presences of faults)

An input combination is referred to as a test for fault fα if, in response to that input
combination, the output of the correctly operating circuit is different from that of the circuit
impaired by fault ‘fα’. If we have observed the ‘fm0’ column, there is only one fault for input
combination 1 1 1, for other input combination there is no fault since f = fm0 (for input
combination 0 0 0, 0 0 1..... 1 1 0) where as for input combination 1 1 1, f ≠ fm0. On the other
hand, Fault fq1 can be detected by the tests 0 0 1, 0 1 1, and 1 0 1, and so on, for other faults.
More precisely, an input combination a1, a2...., an is a test for detecting fault fα if and only if.

f a a a f a a an n(, ...,) (, ...)1 2 1 2
1⊕ =α

where f (a1, a2,an) and f a a anα (, ...)1 2
 denote, respectively, the fault-free output and the

incorrect output in response to the input a1, a2....an.

From the fault table, it is clear that column (m1, m0) and (p1, q1) are identical.

Since these four groups are identical. Thus these Faults are indistinguishable faults of
the fault table. we combine them, choosing one function from each group, and delete rest of
them, In this way we can get fault table from truth table as:

Fault table for minimal set of fault detection test

Inputs Possible Faults

ABC {m0, n0, p0} q0 m1 n1 {p1, q1}

(f ⊕ f1) (f ⊕ f2) (f ⊕ f3) (f ⊕ f4) (f ⊕ f5)

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1 1

(Contd.)

188 Switching Theory

1 0 0 1

1 0 1 1 1

1 1 0

1 1 1 1

(where f1 = fm0 = fn0 = fp0, f2 = fq0, f3 = fm1, fq = fn1 and f5 = fp1 = fq1 and f is fault free output
of the circuit).

Equivalent Faults
As we have seen that columns fm0, fn0, and fp0 are identical, and so are columns fp1, and

fq1. In other words, the circuit output in the presence of fault fp1 is identical with the output
in the presence of fq1. Hence is no input combination which can distinguish fault fp1 from fq1.
Such faults are called equivalent faults. Equivalent faults are indistinguishable whereas faults
that are not equivalent are said to the distinguishable faults. The problem of finding a
minimal set of tests is now reduced to the problem of finding a minimal set of rows so that
every columns has a 1 entry in a least one row of the set. Such a set of rows will be said
to cover the fault table.

Covering the fault table for determination of a minimal set of fault detection
The minimal test set found from the fault table with the help of following two rules:

1. Delete any row that is covered by, or is same as, some other row.

2. Delete any column that covers, or is same as, some other column.

We can easily verify that rows 010 and 100 can be removed because they are equivalent
to 000 similarly row 001 can be removed since it is dominated by row 101. Also row 110 does
not detect any fault and can be removed from the table.

From the fault table. It is seen that test 011, 101 and 111 covers column (m0, n0, p0),
m1, n1, (p1, q1) except q0 are essential test. The essential test are determined by observing
which faults can be detected by just a single test. A fourth test 000 detects q0 and thus
completes the set of tests that detect all single faults in the circuit being tested.

It is convenient to distinguish between a fault-detection test, which refers to a single
application of values to the input terminals, and a fault-detection experiment, which refers
to a set of tests leading to a definite conclusion as to whether or not the circuit operates
correctly for all input combination. In above example the experiment consists of four test as
follows (through not necessarily in this order):

1. Apply 011: if the output is T = 1, circuit faulty and the experiment may be stopped;
it T = 0, apply second test.

2. Apply 101: if T = 1, circuit faulty; otherwise, apply next test.

3. Apply 111: it T = 0, circuit is faulty; otherwise, apply next test.

4. Apply 000: if T = 0, circuit is faulty, if T = 1, circuit operates correctly.

The fault table provides a tool for the determination of a minimal set of fault detection
test for combinational logic circuits. But for larger circuits this method become cumbersome
due to large size of fault table, computation time and memory requirements.

For last example the fault detection table becomes in reduced form as:

Combinational Logic 189

Faults

Test {m0, n0, p0} q0 m1 n1 {p1, q1}

0 0 0 1

0 1 1 1 1

1 0 1 1

1 1 1 1

Thus the minimal complete test get for detections of all single faults of this circuit is {0,
3, 5, 7}.

4.4.3 Fault detection by Path Sensitizing
Here we shall show that a fault-detection test may be found by examining the paths of

transmission from the location of an assumed fault to one of its primary output.

⇒ In a logic circuit, a primary output is a line whose signal output is accessible to the
exterior of the circuit, and primary input is a line that is not fed by any other line in the
circuit.

⇒ A transmission path, or simply path of a combinational circuit, is a connected directed
graph containing no loops from a primary input to one of its primary output.

Path Sensitizing: A path is said to be sensitized if the input to the gates along this path
are assigned value so as to propagate any change on the faulty line along the chosen path
to the output terminal of the path.

The main idea behind the path-sensitizing procedure will be illustrated by a circuit which
detects a s-a-1 fault at its one input as shown in Fig. 4.63.

A 0 1→
1
1

nm 1 0→

0 – 1

p 1 0→ q
0 1→

Circu it
input

C ircu it
output

Fig. 4.63 A circuit describing a sensitized path.

In this circuit it is assume that this path is the only from A to the circuit output and
a test is done which detect a s-a-1 fault at input A. In order to test a s-a-1 fault at input A,
if is necessary to apply a 0 to A and 1’s to all remaining inputs to the AND and NAND gates,
and 0’s to all remaining inputs to the OR and NOR gates in the path. This ensure that all
the gates will allow the propagation of the signal from A to the circuit output and that only
this signal will reach the circuit output. The path is now said to be sensitized.

In Fig. 4.63 if input A is s-a-1, then m changes from 1 to 0, and this changes propagates
through connections n and p and causes q to change from 0 to 1. Clearly, it detects a s-a-1
fault at A also it detects s-a-0 faults at m, n and p and s-a-1 fault at q. A s-a-0 fault at A is
detected in similar manner. So s-a-0 and s-a-1 faults can be detected in this path.

The basic principles of the path-sensitization method, which is also known as the one-
dimensional path sensitization, can thus be summarized as follows:

(1) At the site of the fault assign a logical value complementary to the fault being
tested, i.e., to test xi for s-a-1 assign xi = 1 and to test it for s-a-1 assign
xi = 0.

Essential
test

R
S|

T|

190 Switching Theory

(2) Select a path from the faulty line to one of its primary output. The path is said to
be sensitized if the inputs to the gates along the path are assigned values so as to
propagates to the path output any faults on the wires along the path. The process
is called the forward drive phase of the method.

(3) Along the chooses path, except the lines of the path, assign a value “0” to each input
of the OR and NOR gates in the path and a value 1’s to each input to the NAND
and AND gates in the path.

(4) To determine the primary inputs that will produce all the necessary signals values
specified in the preceding steps. This is accomplished by tracing the signals back-
ward from each of the gates along the path to the primary inputs or circuit inputs.
This process is called the backward-trace phase of the method. If on the other hand,
a contradiction is encountered, choose another path which starts at faulty line and
repeat the above procedure.

(5) Apply steps 1-4 to all the single paths. If none of them is sensitizable, apply the
procedure to all possible groups of three path, and so on.

These all procedure steps can be understood easily by an example

Example. Derive a test for a s-a-1 fault on wire h of Fig. 4.64 given below:

Sensitized
path

f1

f2G 1 4

G1 3G 11G 9

G 1 0

G 8

G 7 h
s-a-1

G 6
x1
x2

x3

x4

x5

Fig. 4.64

The forward derive starts by assigning a 0 to h, and selecting a path to be sensitized.
We choose to sensitize the path G7 G9 G11 G13 to output f1. Clearly G9 and G13 are AND gates
so that their other inputs must be 1, while second input to the OR gates G11 must be 0. This
completes the forward-derive phase and path is next sensitized. Next, we must determine the
primary inputs which must provide the required logical value to the gates along the path.
This is accomplished by tracing back from each gate input to the corresponding primary
inputs. In this example, it is quite straight forward that

x5 = 1

x4 = 1

x3 = 0

and G6 = 1

We get G6 = 1 we may set-1 any one or both inputs to G6

Suppose x1 = 1

x2 = 0

then set X = {1, 0, 0, 1, 1}

Combinational Logic 191

If, in response to these inputs circuit produces the output f1 = 0; then fault in question
does not exist.

If, on the other hand, f1 = 1, the circuit has a fault.

Thus an erroneous outputs implies that some fault exist along the sensitized path.

Limitations of the method
Now suppose that we observe the circuit response to the above set at output f2.

An analysis shows that the input vector X = {1, 0, 0, 1, 1} sensitizes the two paths, these
are

G G G G
and

G G G G

7 9 11 14

7 10 12 14

U
V|

W|
 which emanate from h and terminate at f2.

It is easy, however, to verify that the fault h s-a-1 does not propagate to f2 because there
are two sensitized paths connecting it to the circuit output.

In fact f2 = 1 via G10 and G12 when h = 0

and f2 = 1 via G9 and G11 if h = 1

This does not imply that h cannot be tested via f2. It does imply, however, that, in order
to test h for s-a-1 fault via f2, a test must be found such that only one of the two paths will
the other path will not be sensitized. One such test that sensitizen only the path G7 G10 G12
G14 is X {0, 0, 0, 0, 1}.

Advantage of the path-sensitization method
A major advantage of the path sensitization method is shown in Fig. 4.65:

A 0 1→
1
1

nm 1 0→

1 0→

p 1 0→ 0 1→
0
0

1
1

Fig. 4.65 s-a-1 fault at A.

In many case a test for a primary input is also a test for all the wires along the sensitized
path which connects inputs to the circuit output. Consequently if we can select a set of test
which sensitizes a set of path containing all connections in the circuit, then it is sufficient to
detect just those faults which appear on the circuit input. In fanout free circuits in which each
gate output is connected to just one gate input, there is only one path from each circuit input
to the output, and thus the set of paths originating at the inputs will indeed contain all
connections. In circuits which contain reconvergent farout, the problem become more com-
plicated. In fact single-path-sensitization method does not always generates a test even if one
is known to exist. So single path sensitization method can detect fault for a class of combi-
national circuits in which:

⇒ Each input is an independent input line to the circuits.

⇒ The fanout of every gate is ‘1’.

Now lets shows that single-path sensitization method does not always generates a test
even if one is known to exist.

Consider the fault h s-a-0 in the circuit shown in Fig. 4.66.

192 Switching Theory

X1

X2
X3

X4

G7

G5
G8

G9

G1 0

G11

G1 2 f
h

s-a-0

G6

Fig. 4.66

We shall now show that it is impossible to find a test for this fault by sensetizing just
a single path. Let us choose to sensitize the path G6 G9 G12. This requires:

G6 = 1, which implies x2 = 0 and x3 = 0.

G10 = 0 regardless of whether there is a fault or not, which implies x4 = 1.

G11 = 0 implies G7 = 1 (since x3 = 0), which in turn implies x4 = 0.

Evidently, to satisfy both G10 = 0 and G11 = 0, we must set conflicting requirement on
x4 and thus we have a contradiction. By the symmetry of the circuit it is obvious that an
attempt to sensitize the path through G10 will also fail, and hence the method of one dimen-
sional path sensitizing fails to generates the test x = (0, 0, 0, 0) which man shown to detect
this fault.

The one-dimensional path-sensitizing method failed in this case because it allows the
sensitization of just a single path from the site of the fault. In fact, if we were allowed to
sensitize both paths, through G9 and G10, simultaneously the above test would be generated.
This development of the two-dimensional path sensitizing which is also known as the d-
algorithm. The basic idea in the d-algorithm is to sensitizes simultaneously all possible paths
from the site of the fault to the circuit outputs.

4.5 EXERCISES
Problem 1: Develop a minimized Boolean implementation of a “ones count” circuit that

works as follows. The subsystem has four binary inputs A, B, C, D and generates a 3-bit
output, XYZ, XYZ is 000 if none of the inputs are 1, 001 if one input is 1,010 if two are one,
011 if three inputs are 1, and 100 if all four inputs are 1.

(a) Draw the truth tables for XYZ (A, B, C, D).

(b) Minimize the functions X, Y, Z, using 4-variable K-maps. Write down the Boolean
expressions for the minimized Sum of Products form of each function.

(c) Repeat the minimization process, this time deriving Product of Sums form.

Problem 2: Consider a combinational logic subsystem that performs a two-bit addition
function. It has two 2-bit inputs A B and C D, and forms the 3-bit sum X Y Z.

(a) Draw the truth tables for XYZ (A, B, C, D).

(b) Minimize the functions using 4-variable K-maps to derive minimized Sum of Prod-
ucts forms.

(c) What is the relative performance to compute the resulting sum bits of the 2-bit
adder compared to two full adders connected together? (Hint: which has the worst

Combinational Logic 193

delay in terms of gates to pass through between the inputs and the final outputs,
and how many gates is this?).

Problem 3: Show how to implement the full adder Sum (A, B, C in) and Carry (A, B,
C in) in terms of:

(a) Two 8 : 1 multiplexers;

(b) Two 4 : 1 multiplexers;

(c) If you are limited to 2:1 multiplexers (and inverters) only, how would you use them
to implement the full adder and how many 2:1 multiplexers would you need?

Problem 4: Design a combinational logic subsystem with three inputs, 13, 12, 11, and
two outputs, 01, 01, that behaves as follows. The outputs indicate the highest index of the
inputs that is driven high. For example, if 13 is 0, 12 is 1, 11 is 1, then 01, 00 would be (10
(i.e. 12 is the highest input set to 1).

(a) Specify the function by filling out a complete truth table.

(b) Develop the minimized gate-level implementation using the K-map method.

(c) Develop an implementation using two 4 : 1 multiplexers.

(d) Compare your implementation for (b) and (c). Which is better and under what
criterion?

Problem 5: Design a simple combinational subsystem to the following specification. the
system has the ability to pass its inputs directly to its outputs when a control input, S, is not
asserted. It interchanges its inputs when the control inputs S is asserted. For example, given
four inputs A, B, C, D and four outputs W, X, Y, Z when S = 0, WXYZ = ACD and when S
= 1, WXYZ = BCDA. Show how to implement this functionality using building blocks that are
restricted to be 2 :1 multiplexers and 2 : 1 demultiplexers.

Problem 6: Your task is to design a combinational logic subsystem to decode a hexadeci-
mal digit in the range of 0 through 9. A through F to drive a seven segment display. The
hexadecimal numerals are as follows :

Design a minimized implementation in PLA form. That is, look for common terms
among the seven output functions.

Problem 7: Determine number of days in a month (to control watch display) used in
controlling the display of a wrist-watch LCD screen.

Inputs : month, leap your flag.

Outputs : number of days.

Problem 8: Consider the following functions, which are five different functions over the
inputs A, B, C, D.

(1) F (A, B, C,) = Σm (1, 2, 6, 7)

(2) F (A, B,C,D) = Σm (0, 1, 3, 9, 11, 12, 14, 15)

(3) F' (A, B, C, D) = Σm (2, 4, 5, 6, 7, 8, 10, 13)

(4) F (A, B, C, D) = (ABC + A'B') (C+D)

(5) F (A, B, C, D) = (A + B + C) (A + B + C' + D) (A + B' + C + D') (A' + B')

194 Switching Theory

(a) Implement these in a single PLA structure with four inputs, five outputs, and an
unlimited number of product terms, how many unique product terms are there in
this PLA implementation.

(b) If you are trying to maximize the number of shared product terms across the five
functions, rather than minimizing the literal count for each function independently,
how many unique terms do you obtain? Draw the new K-maps with your selection
of implicants that minimizes the number of unique terms across all five functions.

Problem 9: Consider the following Boolean function in Product of Sums form :

F (A, B, C, D) = (A + B' + D) (A' + B' +D) (B' + C' + D') (A' + C + D) (A' + C' + D)

Show how to implement this function with an 8 : 1 multiplexer, with A, B, C on the
control inputs and D, its complement, and the constants 0 and 1 available as data inputs.

Problem 10: Design a two-bit comparator with the following inputs and outputs:

Inputs : Numbers N1 and N2 to be compared

N1 = AB

N2 = CD.

Outputs : LT, GT, EQ

LT = 1 when AB < CD

GT = 1 when AB > CD

EQ = 1 when AB = CD

Problem 11: Design a 2X2 bit multiplier :

Inputs : Numbers N1 and N2 to be multiplied

N1 = A1 A0

N2 = B1 B0

Outputs ; products : P8, P4, P2, P0

P0 = Product with weighting 2 0 = 1

P2 = Product with weighting 21 = 2

P4 = Product with weighting 22 = 4

P8 = Product with weighting 23 = 8.

Problem 12: Analyse the behaviour of the Circuit below when Input A changes from one
logic state to another.

A B C D

F

Problem 13: Analyse the circuit below for static hazard.

A
S

B

S

Combinational Logic 195

Problem 14: Analyse the pulse shaping circuit below :

A

C

B

D

O pen
sw itch

+

Problem 15: Which of the components below cab be used to build an inverter?

Problem 16: Consider the Equation :

Z = A'B'C'D + A'B' CD' + A'BC' D' + A' BCD + ABC'D + ABCD' + AB'C'D' + AB'CD.

Implement this using 2-1 multiplexers.

Problem 17: Use a 8-input multiplexer to generate the function

Y AB AD CD BC= + + +
Problem 18: Implement the following function with an multiplexer.

y m= Σ (, , , , , ,)0 1 5 7 10 14 15

Problem 19: Given Y m= Σ (1, 3, 5, 6)

Problem 20: Design a 32:1 multiplexer using two 16:1 multiplexers.

Problem 21: Implement a 64 output demultiplexer tree using 1 × 4 DEMUX.

Problem 22: Realize the following functions of four variables using

(i) 8 : 1 multiplexers (ii) 16 : 1 multiplexers.

Problem 23: Design a BCD-to Gray code converter using

(i) 8:1 mutlplexers (ii) dual 4 : 1 multiplexers and some gates.

Problem 24: Design a Gray-to-BCD code converter using

(i) two dual 4 : 1 multiplexers and some gates.

(ii) one 1 : 16 demultiplexer and NAND gates.

Problem 25: Design a 40:1 multiplexer using 8 : 1 multiplexers.

Problem 26: Implement the following combinational logic circuit using a 4 to 16 line
decoder.

Y1 = Σm (2, 3, 9)

Y2 = Σm (10, 12, 13)

Y3 = Σm (2, 4, 8)

Y4 = Σm (1, 2, 4, 7, 10, 12)

196 Switching Theory

5
CHAPTER

5.0 INTRODUCTION
Digital circuit construction with small-scale integrated (SSI) and medium-scale integrated

(MSI) logic has long been a basis of introductory digital logic design (refer Chap. 3). In recent
times, designs using complex programmable logic such as programmable array logic (PLA)
chips and field programmable gate arrays (FPGAs) have begun replacing these digital circuits.

This chapter deals with devices that can be programmed to realize specified logical
functions. Since evolution of programmable logic devices (PLDs) started with programmable
ROM, it introduces ROMs and show how they can be used as a universal logic device and how
simple programmable logic devices can be derived from ROMs. It also gives an overview of
Complex Programmable Logic Devices (CPLDs) and Field Programmable Gate Arrays (FPGAs).

5.1 READ ONLY MEMORY (ROM)
A Read Only Memory (ROM) as shown in Fig. 5.1 is a matrix of data that is accessed one

row at a time. It consists of k input lines and n output lines. Each bit combination of output
lines is called a word while each bit combination of input variables is called an address. The
number of bits per word is equal to the number of output lines n. A ROM is describe by the
number of words 2k, the number of bits per word n.

The A inputs are address lines used to select one row (called a word) of the matrix for
access. If A = i, then row i is selected and its data appears on the output terminals D. In this
case we say that the contents of row i are read from the memory.

RO MA0

A1

Ak– 1

D n – 1 D 1 D 0

Fig. 5.1

If there are k address lines, then there are 2k words in the ROM .The number of bits
per word is called the word size. The data values of the words are called the contents of
the memory and are said to be stored in the memory. The term read only refers to the
property that once data is stored in a ROM, either it cannot be changed, or it is not changed
very often.

196

PROGRAMMABLE LOGIC DEVICES

Programmable Logic Devices 197

ROM can be viewed as a combinational circuit with AND gates connected as a decoder
and number of OR gates equal to the number of outputs. Internally a ROM contains a decoder
and a storage array as shown in the Fig. 5.2.

Decoder
A0

A1

Ak –1

m 0

m k2 – 1

D n – 1 D 1 D 0

m 1

0 0 1

1 1 0

0 1 1

Fig. 5.2

When the address is i, the ith output of the decoder mi is activated selecting row i of
the data array. Functionally the data array can be viewed as a programmable OR array. Each
column acts as a stack of OR gates as shown in the Fig. 5.3.

m 0

m 1

D n – 1 D 1 D 0

m k2 – 1

Fig. 5.3

Depending on the stored value (0/1)switch is open or closed. If a 0 is stored in a row, the
switch is open and if a 1 is stored, the switch is closed. The type of ROM is determined by
the way the switches are set or reset (i.e., programmed).

(I) Mask programmed ROMs: In the mask programmed ROMs, switch is realized at the
time the ROM is manufactured. Either a connection is made by putting in a wire, or the
connection is left open by not putting in a wire.

(II) Field programmable ROMs (PROMs): In the field programmable ROMs, switch is
realized by a fuse. When the ROM is manufactured all switches are closed since all the fuses
are intact. To open a switch the fuse is blown by sending a larger than usual current through
it. Once a fuse is blown, it can not be reinstalled.

(III) Erasable ROMs (EPROMs): In the erasable ROMs switch is realized by a special kind
of fuse that can be restored to its usual closed state, usually by the insertion of extra energy
(e.g., shining ultraviolet light on the fuse). All fuses are reset when this is done.

(IV) Electrically Programmable ROMs (EPROMs): In the electrically programmable ROMs
fuses are reset by the application of larger than usual currents. Sometimes subsections of the
ROM can be reset without resetting all fuses.

198 Switching Theory

Consider a 32×8 ROM as shown in Fig. 5.4. The ROM consists of 32 words of bit size 8.
That is, there are 32 distinct words stored which may be available through eight output lines.
The five inputs are decoded into 32 lines and each output of the decoder represents one of
the minterms of a function of five variables. Each one of the 32 addresses selects only one
output from the decoder. The 32 outputs of the decoder are connected through links to each
OR gate.

0
1
2
3
.
.
.

28
29
30
31

D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

5 × 32
decoder

A0

A1

A2

A3

A4

Fig. 5.4

5.1.1 Realizing Logical Functions with ROM
The ROM is a two-level implementation in sum of minterms form. ROMs with k address

lines and n data terminals can be used to realize any n logical functions of k variables. For
this one have to simply store the truth table for each function in a column of the ROM data
array. The advantage of implementing logical functions by means of some form of programmable
ROM, we have the possibility of reconfigurable logic. That is, the same hardware being
reprogrammed to realize different logic at different times. But the disadvantage of using large
ROMs to realize logical functions is that, the ROMs are much slower than gate realizations
of the functions. The following example explains the procedure for realizing logical functions.

Example. Design a combinational circuit using a ROM that accepts a 2-bit number and
generates an output binary number equal to the square of the input number.

Step 1: Derive the truth table for the combinational circuit. For the given example the
truth table is

 Inputs Outpus Equivalent decimal

A1 A0 B3 B2 B1 B0

0 0 0 0 0 0 0

0 1 0 0 0 1 1

1 0 0 1 0 0 4

1 1 1 0 0 1 9

Step 2: If possible, reduce the truth table for the ROM by using certain properties in the
truth table of the combinational circuit. For the given example, two inputs and four outputs
are needed to accommodate all possible numbers.

Programmable Logic Devices 199

Since output B0 is always equal to input A0, therefore there is no need to generate B0
with a ROM. Also B1 is known as it is always 0. Therefore we need to generate only two
outputs with the ROM; the other two are easily obtained.

Step 3: Find the minimum size of ROM from step 2

The minimum size ROM needed must have two inputs and two outputs. Two inputs
specify four word, so the ROM size must be 4×2. The two inputs specify four words of two
bits each. The other two outputs of the combinational circuit are equal to 0 (D1) and A0(D0).

A1 A0 D3 D2

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 0

ROM truth table

5.2 PROGRAMMABLE LOGIC ARRAYS
The first type of user-programmable chip that could implement logic circuits was the

Programmable Read-Only Memory (PROM), in which address lines can be used as logic circuit
inputs and data lines as outputs. Fig. 5.5 shows the basic configuration of PROM.

Inpu ts
Fixed

AND array
(decoder)

Program m able
O R array O utpu ts

Fig. 5.5 Basic configuration of Programmable Read-Only Memory (PROM)

Logic functions, however, rarely require more than a few product terms, and a PROM
contains a full decoder for its address inputs. PROMs are thus an inefficient architecture for
realizing logic circuits, and so are rarely used in practice for that purpose. The first device
developed later specifically for implementing logic circuits was the Field-Programmable Logic
Array (FPLA), or simply PLA for short. A PLA consists of two levels of logic gates: a
programmable “wired” AND-plane followed by a programmable “wired” OR-plane.

Inpu ts Program m able
O R array O utpu tsProgram m able

AND array

Fig. 5.6 Basic configuration of Programmable Logic Array (PLA)

A PLA is structured so that any of its inputs (or their complements) can be AND’ed
together in the AND-plane; each AND-plane output can thus correspond to any product term
of the inputs. Similarly, each OR plane output can be configured to produce the logical sum of
any of the AND-plane outputs. With this structure, PLAs are well-suited for implementing logic
functions in sum-of-products form. They are also quite versatile, since both the AND terms and
OR terms can have many inputs (this feature is often referred to as wide AND and OR gates).

Programmable Logic Arrays (PLAs) have the same programmable OR array as a ROM,
but also have a programmable AND array instead of the decoder as shown in Fig. 5.7. The
programmable AND array can be used to produce arbitrary product terms, not just minterms.
While the decoder produces all minterms of k variables.

200 Switching Theory

AND
ARRAY

Xk

p 0

p m

Yn – 1 Y1 Y0

p 1

X1 X0

O R
ARRAY

Fig. 5.7

Since the number of possible product terms m in PLA is much less than the number of
possible minterms 2k, so some functions may not be realizable in PLA.

The structure of a row of the programmable AND array is shown in Fig. 5.8 (a).

Xk X 1 X0

p i1

Fig. 5.8 (a)

and of a column of the programmable OR array is shown in Fig. 5.8 (b).

Fig. 5.8 (b)

While the notation of a PLA is shown in Fig. 5.9.

Fig. 5.9

Programmable Logic Devices 201

5.2.1 Realizing Logical Functions with PLAs
During implementation (or programming) a dot (or cross) is placed at an intersection if

the variable is to be included in the product term or to sum term. For example a PLA with
3 inputs, 4 product terms and 2 outputs is shown.

Example. Implement the following with PLA.
P1 = A' • C'
P2 = A' • C
P3 = A • B'
P4 = A • B • C
X = P3 = A • B'
Y = P2 + P4 = A' • C + A • B • C
Z = P1 + P3 = A' • C' + A • B'

A B C

P1

P2

P3

P4

X Y Z

Note: In this implementation dot is placed at intersection but cross can be used for
the same.

202 Switching Theory

5.3 PROGRAMMABLE ARRAY LOGIC (PAL)
When PLAs were introduced in the early 1970s, by Phillips, their main drawbacks are

that they are expensive to manufacture and offered poor speed-performance. Both disadvantages
are due to the two levels of configurable logic, because programmable logic planes were
difficult to manufacture and introduced significant propagation delays. To overcome these
weaknesses, Programmable Array Logic (PAL) devices are developed. As Fig. 5.10 (a) illustrates,
PALs feature only a single level of programmability, consisting of a programmable “wired”
AND plane that feeds fixed OR-gates.

Inpu ts Program m able
AND array

Fixed
O R array O utpu ts

Fig. 5.10 (a) Basic configuration of Programmable Array Logic (PAL)

To compensate for lack of generality incurred because the OR Outputs plane is fixed,
several variants of PALs are produced, with different numbers of inputs and outputs, and
various sizes of OR-gates. PALs usually contain flip-flops connected to the OR-gate outputs so
that sequential circuits can be realized. PAL devices are important because when introduced
they had a profound effect on digital hardware design, and also they are the basis for more
sophisticated architectures. Variants of the basic PAL architecture are featured in several
other products known by different acronyms. All small PLDs, including PLAs, PALs, and PAL-
like devices are grouped into a single category called Simple PLDs (SPLDs), whose most
important characteristics are low cost and very high pin-to-pin speed-performance.

While the ROM has a fixed AND array and a programmable OR array, the PAL has a
programmable AND array and a fixed OR array. The main advantage of the PAL over the PLA
and the ROM is that it is faster and easier to fabricate.

Fig. 5.10 (b) represents a segment of an unprogrammed PAL.

I2

I1

F1

F4

F2F3

F5

F6

O utpu t

fuse

Fig. 5.10 (b) PAL segment

The symbol

Non-inverted outpu t

Inverted ou tput

Programmable Logic Devices 203

Represents an input buffer which is logically equivalent to

A buffer is used because each PAL input have to drive many AND gate inputs. When the
PAL is programmed, the fusible links (F1, F2, F8) are selectively blown to leave the
desired connection to the AND gate inputs. Connections to the AND gate inputs in a PAL are
represented by X’s as shown

A
B
C

ABC × × ×

A B C

ABC

Fig. 5.10 (c) shows the use of PAL segment of Fig. 5.10 (b) to realize the function I′ I2′
+ I1′ I2. The X’s indicate that the I1′ and I2′ lines are connectded to the first AND gate, and
the I1, and I2 lines are connected to the other gate

× ×

××

I1

I2

I + I + I I1 2 1 2
′ ′

Fig. 5.10 (c) Programmed PAL Example

In early PALs, only seven product terms could be summed into an OR gate. Therefore,
not all functions could be realized with these PLAs. Also, the output was inverted in these
early PALs so that what was really realized is

(P1 + P2 + . . . + P7)′ = P1′ • P2′ • . . . • P7′
Example of first-generation PAL is PAL 16L8 having following features.

• 10 input, 2 complemented outputs, 6 I/O pins
• Programmable (one AND term) 3-state outputs
• Seven product terms per output
• 20 pin chip
• 10 input (14 for 20V8)

A sum of products function with a small number of product terms may require a large
number product terms when realized with a PAL.

For example: To implement the function Z = A • B • C + D • E • F
The inverted output of the function Z' is given as

Z′ = (A • B • C)' • (D • E • F)' = (A' + B' + C') • (D' + E' + F')
= A' • D' + A' • E' + A' • F'+ B' • D' + B' • E' + B' • F'

+ C' • D' + C' • E' + C' • F'
= p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9

204 Switching Theory

This has nine product terms and could not be realized in one pass with the early PALs.
The only way to realize the this function in a PAL is to use two passes as shown.

5.3.1 Commercially Available SPLDs
For digital hardware designers for the past two decades, SPLDs are very important

devices. SPLDs represent the highest speed-performance FPDs available, and are inexpensive.
They are also straightforward and well understood.

Two of the most popular SPLDs are the PALs produced by Advanced Micro Devices
(AMD) known as the 16R8 and 22V10. Both of these devices are industry standards and are
widely second-sourced by various companies. The name “16R8” means that the PAL has a
maximum of 16 inputs (there are 8 dedicated inputs and 8 input/outputs), and a maximum
of 8 outputs. The “R” refers to the type of outputs provided by the PAL and means that each
output is “registered” by a D flip-flop. Similarly, the “22V10” has a maximum of 22 inputs and
10 outputs. Here, the “V” means each output is “versatile” and can be configured in various
ways, some configurations registered and some not.

Another widely used and second sourced SPLD is the Altera Classic EP610. This device
is similar in complexity to PALs, but it offers more flexibility in the way that outputs are
produced and has larger AND- and OR-planes. In the EP610, outputs can be registered and
the flip-flops are configurable as any of D, T, JK, or SR.

In addition to the SPLDs mentioned above many other products are commercial available.
All SPLDs share common characteristics, like some sort of logic planes (AND, OR, NOR, or
NAND), but each specific product offers unique features that may be particularly suitable for
some applications.

5.3.2 Generic Array Logic (GAL)
Generic Array Logic (GAL) is a programmable logic device that can be configured to

emulate many earlier PLDs including those with internal flip-flops. GAL 16V8C and 20V8C
are examples of Generic Array Logic. The only difference between the two is that the 16V8
is a 20-pin chip and the 20V8 is a 24-pin chip, which uses the extra pins for inputs. The
characteristics of these devices are:

• 10 input (14 for 20V8)

• Programmable (one AND term) 3-state outputs

• Seven or eight product terms per output

• Programmable output polarity

Programmable Logic Devices 205

• Realize either true or complemented output signal

• Realize either POS or SOP directly

When using GAL as a combinational device, All outputs can be programmed to one of
the following three configurations except that the two end outputs have some minor limitations
as illustrated by Fig. 5.11.

Bidirectional I/O

Dedica ted O utput

1

Dedica ted Input

0

I/o

O utpu t

Inpu t

Fig. 5.11

For example GAL 22V10C is a 24-pin chip having 12 input terminals and 10 input/output
terminals. Among outputs, two of the outputs can have up to 8 product terms, two have 10,
two have 12, two have 14 and two have 16, except the output buffer control.

The Combinational Configurations for GAL 22V10C is

I/o

5.3.3 Applications of PLDs
PLDs are often used for address decoding, where they have several clear advantages over

the 7400-series TTL parts that they replaced. First, of course, is that one chip requires less
board area, power, and wiring than several do. Another advantage is that the design inside
the chip is flexible, so a change in the logic doesn’t require any rewiring of the board. Rather,
the decoding logic can be altered by simply replacing that one PLD with another part that
has been programmed with the new design.

206 Switching Theory

5.4 COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLD)
As technology has advanced, it has become possible to produce devices with higher

capacity than SPLDs (PALs). The difficulty with increasing capacity of a strict SPLD architecture
is that the structure of the programmable logic-planes grows too quickly in size as the
number of inputs is increased. It also significantly slows the chip down due to long rows of
AND gates. The only feasible way to provide large capacity devices based on SPLD architectures
is then to integrate multiple SPLDs onto a single chip, and are referred to as Complex PLDs
(CPLDs) as shown in Fig. 5.12.

Fig. 5.12 (a)

PAL-like b lock (details not shown)

D Q

D Q

D Q

Fig. 5.12 (b)

Programmable Logic Devices 207

5.4.1 Applications of CPLDs
Because CPLDs offer high speeds and a range of capacities, they are useful for a very

wide range of applications, from implementing random glue logic to prototyping small gate
arrays. One of the most common uses in industry at this time, and a strong reason for the
large growth of the CPLD market, is the conversion of designs that consist of multiple SPLDs
into a smaller number of CPLDs.

CPLDs can realize reasonably complex designs, such as graphics controller, LAN
controllers, UARTs, cache control, and many others. As a general rule-of-thumb, circuits that
can exploit wide AND/OR gates, and do not need a very large number of flip-flops are good
candidates for implementation in CPLDs. A significant advantage of CPLDs is that they
provide simple design changes through re-programming (all commercial CPLD products are
re-programmable). With programmable CPLDs it is even possible to re-configure hardware
(an example might be to change a protocol for a communications circuit) without power-down.

Designs often partition naturally into the SPLD-like blocks in a CPLD. The result is
more predictable speed-performance than would be the case if a design were split into many
small pieces and then those pieces were mapped into different areas of the chip. Predictability
of circuit implementation is one of the strongest advantages of CPLD architectures.

5.5 FIELD-PROGRAMMABLE GATE ARRAYS (FPGA)
Field Programmable Gate Arrays (FPGAs) are flexible, programmable devices with a

broad range of capabilities. Their basic structure consists of an array of universal, programmable
logic cells embedded in a configurable connection matrix. There are three key parts of FPGA
structure: logic blocks, interconnect, and I/O blocks. The I/O blocks form a ring around the
outer edge of the part. Each of these provides individually selectable input, output, or bi-
directional access to one of the general-purpose I/O pins on the exterior of the FPGA package.
Inside the ring of I/O blocks lies a rectangular array of logic blocks. And connecting logic
blocks to logic blocks and I/O blocks to logic blocks is the programmable interconnect wiring.

In FPGAs , CPLD’s PLDs are replaced with a much smaller logic block. The logic blocks
in an FPGA are generally nothing more than a couple of logic gates or a look-up table and
a flip-flop. The FPGAs use a more flexible and faster interconnection structure than the
CPLDs. In the FPGAs, the logic blocks are embedded in a mesh or wires that have programm-
able interconnect points that can be used to connect two wires together or a wire to a logic
block as shown in Fig. 5.13.

Switch
M atrix

Sw itch
M atrix

Sw itch
M atrix

Sw itch
M atrix

Configurable
Log ic

B lock (CLB)

I/O B lock

Configurable
Log ic

B lock (CLB)

I/O B lock

I/O
 B

lo
ck

Configurable
Log ic

B lock (CLB)

Configurable
Log ic

B lock (CLB)

I/O
 B

lo
ck

I/O P ins

Fig. 5.13 Fig. 5.14

208 Switching Theory

There are several architectures for FPGAs available but the two popular architectures
are that, used by Xilinx and Altera. The Xilinx chips utilize an “island-type” architecture,
where logic functions are broken up into small islands of 4–6 term arbitrary functions, and
connections between these islands are computed. Fig. 5.14 illustrates the basic structure of
the Xilinx FPGA. Altera’s architecture ties the chip inputs and outputs more closely to the
logic blocks, as shown in Fig. 5.15. This architecture places the logic blocks around one
central, highly connected routing array.

The circuits used to implement combinational logic in logic blocks are called lookup
tables (LUT). For example the LUT in the Xilinx XC4000 uses three ROMs to realize the
LUTs and generate the following classes of logical functions:

Log ic
Array
Block

(LAB)

Log ic
Array
Block

(LAB)

Log ic
Array
Block

(LAB)

Program m able
In te rconnection

Array

(PIA)

Log ic
Array
Block

(LAB)

Log ic
Array
Block

(LAB)

Log ic
Array
Block

(LAB)

I/O P ins

Fig. 5.15

• Any two different functions of 4 variables each plus any other function of 3 variables.

• Any function of 5 variables. How?

• Any function of 4 variables, plus some (but not all) functions of 6 variables.

• Some (but not all) functions of up to 9 variables.

G

G

H

Fig. 5.16

The Fig. 5.16 shows the LUT’s structure in Xilinx XC4000. The boxes G and H are
ROMs with 16 1-bit words and H is a ROM with 8 1-bit words. While the structure of LUT’s
in Altera FPGAs are as shown in Fig. 5.17.

Programmable Logic Devices 209

 = Program – controlled multiplexer

Fig. 5.17

• Example of programmed FPGA

5.5.1 Applications of FPGAs
FPGAs have gained rapid acceptance and growth over the past decade because they can

be applied to a very wide range of applications. A list of typical applications includes: random
logic, integrating multiple SPLDs, device controllers, communication encoding and filtering,
small to medium sized systems with SRAM blocks, and many more.

Other interesting applications of FPGAs are prototyping of designs later to be implemented
in gate arrays, and also emulation of entire large hardware systems. The former of these
applications might be possible using only a single large FPGA (which corresponds to a small
Gate Array in terms of capacity), and the latter would involve many FPGAs connected by
some sort of interconnect.

Another promising area for FPGA application, which is only beginning to be developed, is
the usage of FPGAs as custom computing machines. This involves using the programmable
parts to “execute” software, rather than compiling the software for execution on a regular CPU.

210 Switching Theory

5.6 USER-PROGRAMMABLE SWITCH TECHNOLOGIES
The first type of user-programmable switch developed was the fuse used in PLAs. Although

fuses are still used in some smaller devices, but for higher density devices, where CMOS
dominates the IC industry, different approaches to implementing programmable switches
have been developed. For CPLDs the main switch technologies (in commercial products) are
floating gate transistors like those used in EPROM and EEPROM, and for FPGAs they are
SRAM and antifuse. Each of these are briefly discussed below.

An EEPROM or EPROM transistor is used as a programmable switch for CPLDs (and
also for many SPLDs) by placing the transistor between two wires in a way that facilitates
implementation of wired-AND functions. This is illustrated in Fig. 5.18, which shows EPROM
transistors as they might be connected in an AND-plane of a CPLD. An input to the AND-
plane can drive a product wire to logic level ‘0’ through an EPROM transistor, if that input
is part of the corresponding product term. For inputs that are not involved for a product term,
the appropriate EPROM transistors are programmed to be permanently turned off. A diagram
for an EEPROM based device would look similar.

+5V

EPR O M EPR O M

Input w ire Inpu t w ire

Product w ire

Fig. 5.18 EPROM Programmable Switches.

Although there is no technical reason why EPROM or EEPROM could not be applied to

FPGAs, current commercial FPGA products are based either on SRAM or antifuse
technologies, as discussed below.

Fig. 5.19 SRAM-controlled Programmable Switches

Programmable Logic Devices 211

An example of usage of SRAM-controlled switches is illustrated in Fig. 5.19, showing two
applications of SRAM cells: for controlling the gate nodes of pass-transistor switches and to
control the select lines of multiplexers that drive logic block inputs.

The figures gives an example of the connection of one logic block (represented by the
AND-gate in the upper left corner) to another through two pass-transistor switches, and then
a multiplexer, all controlled by SRAM cells. Whether an FPGA uses pass-transistors or
multiplexers or both depends on the particular product.

The other type of programmable switch used in FPGAs is the antifuse. Antifuses are
originally open-circuits and take on low resistance only when programmed. Antifuses are
suitable for FPGAs because they can be built using modified CMOS technology. As an example,
Actel’s antifuse structure, known as PLICE, is depicted in Fig. 5.20. The figure shows that
an antifuse is positioned between two interconnect wires and physically consists of three
sandwiched layers: the top and bottom layers are conductors, and the middle layer is an
insulator. When unprogrammed, the insulator isolates the top and bottom layers, but when
programmed the insulator changes to become a low-resistance link. PLICE uses Poly-Si and
n+ diffusion as conductors and ONO as an insulator, but other antifuses rely on metal for
conductors, with amorphous silicon as the middle layer.

Fig. 5.20 Actel Antifuse Structure

Table lists the most important characteristics of the programming technologies discussed
in this section. The left-most column of the table indicates whether the programmable switches
are one-time programmable (OTP), or can be re-programmed (RP). The next column lists
whether the switches are volatile, and the last column names the underlying transistor
technology.

Table: Summary of Programming Technologies

Name Re-programmable Volatile Technology

Fuse no no Bipolar

EPROM Yes (out of circuit) no UVCMOS

EEPROM Yes (in circuit) no EECMOS

SRAM Yes (in circuit) yes CMOS

Antifuse no no CMOS+

5.7 EXERCISES
1. Realize the following functions using PLA

f1 (A, B, C) = Σ (0, 2, 4, 5)
f2 (A, B, C) = Σ (1, 5, 6, 7)

212 Switching Theory

2. Realize the following functions using PLA
f1 = Σ (1, 2, 3, 5)
f2 = Σ (2, 5, 6, 7)
f3 = Σ (0, 4, 6)

3. What is a PLA ? Describe its uses.
4. What is ROM ? Describe using block diagram. What size ROM would it take to

implement a binary multiplier that multiplies two 4 bit-numbers.
5. Implement the combinational circuit specified by the truth table given

 Inputs Outputs

A1 A0 F1 F2

0 0 0 1

0 1 1 0

1 0 1 1

1 1 1 0

6. Derive the PLA program table for a combinational circuit that squares a 3-bit
number. Minimize the number of product terms.

7. Implement the problem 6 with the ROM.
8. List the PLA program table for the BCD-to-excess-3 code converter.
9. Write short notes on user programmable switch technologies.

10. Write short notes on following:
(i) ROM (ii) PLA

(iii) PAL (iv) GAL
(v) CPLD (vi) FPGA

6.0 INTRODUCTION
In the earlier chapters, we studied the digital circuits whose output at any instant of

time are entirely dependent on the input present at that time. Such circuits are called as
combinational circuits on the other hand sequential circuits are those in which the output
at any instant of time is determined by the applied input and past history of these inputs
(i.e. present state). Alternately, sequential circuits are those in which output at any given
time is not only dependent on the input, present at that time but also on previous outputs.
Naturally, such circuits must record the previous outputs. This gives rise to memory. Often,
there are requirements of digital circuits whose output remain unchanged, once set, even
if the inputs are removed. Such devices are referred as “memory elements”, each of which
can hold 1-bit of information. These binary bits can be retained in the memory indefinitely
(as long as power is delivered) or untill new information is feeded to the circuit.

Combina tiona l
C ircu it

M em ory
Devices

Exte rna l
O utpu t

Exte rna l
Inpu t

C lock Inpu t

Fig. 6.1 Block Diagram of a Sequential Circuit

A block diagram of a sequential circuit is shown in Fig. 6.1. A Sequential circuit can
be regarded as a collection of memory elements and combinational circuit, as shown in
Fig. 6.1. A feedback path is formed by using memory elements, input to which is the output
of combinational circuit. The binary information stored in memory element at any given
time is defined as the state of sequential circuit at that time. Present contents of memory
elements is referred as the present state. The combinational circuit receive the signals
from external input and from the memory output and determines the external output. They
also determine the condition and binary values to change the state of memory. The new
contents of the memory elements are referred as next state and depend upon the external

6
CHAPTER

213

SYNCHRONOUS (CLOCKED)
SEQUENTIAL CIRCUITS

214 Switching Theory

input and present state. Hence a sequential circuit can be completely specified by a time
sequence of inputs, outputs and the internal states. In general, clock is used to control the
operation. The clock frequency determines the speed of operation of a sequential circuit.

There exist two main category of sequential circuits, namely synchronous and
asynchronous sequential circuits.

A sequential circuit whose behaviour depends upon the sequence in which the inputs
are applied, are called Asynchronous Sequential Circuits. In these circuits, outputs are
affected whenever a change in inputs are detected. Memory elements used in asynchronous
circuits mostly, are time delay devices. The memory capability of time delay devices are due
to the propagation delay of the devices. Propagation delay produced by the logic gates are
sufficient for this purpose. Hence “An Synchronous sequential circuit can be regarded as a
combinational circuit with feedback”. However feedback among logic gates make the
asynchronous sequential circuits, often susceptible to instability. As a result they may become
unstable. This makes the design of asynchronous circuits very tedious and difficult.

A Synchronous Sequential Circuit may be defined as a sequential circuit, whose
state can be affected only at the discrete instants of time. The synchronization is achieved
by using a timing device, termed as System Clock Generator, which generates a periodic
train of clock pulses. The clock pulses are feeded to entire system in such a way that
internal states (i.e. memory contents) are affected only when the clock pulses hit the circuit.
A synchronous sequential circuit that uses clock at the input of memory elements are
referred as Clocked Sequential circuit.

The clocked sequential circuits use a memory element known as Flip-Flop. A flip-flop
is an electronic circuit used to store 1-bit of information, and thus forms a 1-bit memory cell.
These circuits have two outputs, one giving the value of binary bit stored in it and the other
gives the complemented value. In this chapter it is our prime concern to discuss the
characteristics of most common types of flip-flops used in digital systems.

The real difference among various flip-flops are the number of inputs and the manner
in which binary information can be entered into it. In the next section we examine the most
general flip-flops used in digital systems.

6.1 FLIP-FLOPS
We have earlier indicated that flip-flops are 1-bit memory cells, that can maintain the

stored bit for desired period of time.

A Bistable device is one in which two well defined states exist, and at any time the
device could assume either of the stable states. A stable state is a state, once reached by
a device does not changes untill and unless something is done to change it. A toggle switch
has two stable states, and can be regarded as a bistable device. When it is closed, it remains
closed (A stable state) untill some one opens it. When it is open, it remains open (2nd stable
state) untill some one closes it i.e. make it to return to its first stable state. So it is evident
that the switch may be viewed as 1-bit memory cell, since it maintains its state (either open
or close). Infact any bistable device may be referred as 1-bit memory cell.

A Flip-Flop may also be defined as a bistable electronics device whose two stable
states are 0V and + 5V corresponding to Logic 0 and Logic 1 respectively. The two stable
states and flip-flop as a memory element is illustrated in Fig. 6.2. Fig. 6.2 (a) shows that
the flip-flop is in ‘State 0’ as output is 0V. This can be regarded as storing Logic 0. Similarly
flip-flop is said to be in ‘State 1’, see Fig. 6.2 (b), when the output is 5 V. This can be regarded

Synchronous (Clocked) Sequential Circuits 215

as storing logic 1. Since at any given time flip-flop is in either of two states the flip-flop may
also be regarded as Bistable Multivibrator. Since the state once reached is maintained untill
it is deliberately changed, the flip-flop is viewed as memory element.

Flip -Flop

0V

O utpu t

+V = 5VC C

(a) S tate 0 or Low S tate

Flip -Flop

5V

O utpu t

+V = 5VC C

(b) S tate 1 or H igh S ta te

Fig. 6.2 Flip-Flop as Bistable Device

The basic memory circuit or flip-flop can be easily obtained by connecting two inverters
(Not gates) in series and then connecting the output of second inverter to the input of first
inverter through a feedback path, as shown in Fig. 6.3(a).

(a)

BA

S
Feed B ack PathSw itch

V1 V3

V2

(b)

BA
V = 0V1 V3 = 0V

V = 5V2

S

(c)

BA

S

V = 0V1 V = 0V3V = 5V2

(d)

BA

S

V = 5V1 V = 5V3V = 0V2

Fig. 6.3 Basic Flip-Flop or Latch ‘Logic 0’ = 0V, and ‘Logic 1’ = 5 V

It is evident from figure that V1 and V3 will always be same, due to very nature of
inverters.

216 Switching Theory

Let us define Logic 0 = 0V and Logic 1 = 5 V. Now open the switch ‘S’ to remove the
feedback and connect V1 to ground, as shown in Fig. 6.3 (b). Thus input to inverter A is Logic
0 and its output would be Logic 1 which is given to the input of inverter B. Since input to
inverter B is Logic 1, its output would be Logic 0. Hence input of inverter A and output of
inverter B are same. Now if we close the switch S feedback path is reconnected, then ground
can be removed from V1 and V3 can still be at 0V i.e. Logic 0. This is shown in Fig. 6.3 (c).
This is possible because once the V1 is given 0V (i.e. Logic 0) the V3 will also be at 0V and
then it can be used to hold the input to inverter A at 0V, through the feedback path. This
is first stable state.

In the simpler way if we connect the V1 to 5 V and repeat the whole process, we reach
to second stable state because V3 = 5V. Essentially the V3 holds the input to inverter. A (i.e.
V1), allowing + 5V supply to be removed, as shown in Fig. 6.3 (d). Thus V3 = 5 V can be
maintained untill desired period time.

A simple observation of the flip-flop shown in Fig. 6.3 (a) reveals that V2 and V3 are

always complementary, i.e. V V2 3= or V V .3 2= This does mean that “at any point of time,
irrespective of the value of V1, both the stable states are available”, see Fig. 6.3 (c) 6.3 (d).
This is fundamental condition to 9 Flip-Flop.

Since the information present at the input (i.e. at V1) is locked or latched in the circuit,
it is also referred or Latch.

When the output is in low state (i.e. V3 = 0 V), it is frequently referred as Reset State.
Where as when the output is in high state (i.e. V3 = 5 V), it is conveniently called as Set
State. Fig. 6.3 (c) and 6.3 (d) shows the reset and set states, respectively.

6.1.1 RS Flip-Flop
Although the basic latch shown by the Fig. 6.3 (a) was successful to memorize (or store)

1-bit information, it does not provide any convenient mean to enter the required binary bit.
Thus to provide a way to enter the data circuit of Fig. 6.3 (a) can be modified by replacing
the two inverters by two 2-input NOR gate or NAND gates, discussed in following articles.

The NOR LATCH: The NOR latch is shown by Fig. 6.4 (a) and 6.4 (b). Notice that if
we connect the inputs, labelled as R and S, to logic 0 the circuit will be same as the circuit
shown in Fig. 6.3 (a) and thus behave exactly same as the NOT gate latch of Fig. 6.3 (a).

The voltage V2 and V3 are now labelled as Q and Q and are declared as output. Regardless

of the value of Q, its complement is Q as V V().3 2= The two inputs to this flip-flop are R and
S, stand for RESET and SET inputs respectively. A ‘1’ on input R switches the flip-flop in

reset state i.e. Q = ‘0’ and Q = ‘1’. A ‘1’ on inputs (SET input) will bring the latch into set

state i.e. Q = ‘1’ and Q = ‘0’. Due to this action it is often called set-reset latch. The
operation and behaviour is summarized in the truth table shown by Fig. 6.4 (c). Fig. 6.4 (d)
displays the logic symbol of RS (or SR) flip-flop.

To understand the operation of this flip-flop, recall that a ‘1’ at any input of a NOR gate
forces its output to ‘0’ where as ‘0’ at an input does not affect the output of NOR gate.

When inputs are S = R = 0, first row of truth tables it does not affect the output. As
a result the Latch maintains its state. For example if before application of the inputs S =
R = 0, the output was Q = 1, then it remains 1 after S = R = 0 are applied. Thus when both

Synchronous (Clocked) Sequential Circuits 217

the inputs are low the flip-flop maintain its last state. Thats why the truth table has entry
Q in first row.

(c) Tru th Tab le

R
Q

S B

A

R Q

S Q

R esulting S ta te

Las t S tate or N o
C ha nge a t outp ut

R eset S tate

Se t S ta te

Ind eterm inate
or F orb idden S tate

S

0 0

00

0

1

1

?1

1

Q

QR

1

(d) Log ic Sym bo l

(V2)

(V3)Q

(b) Construction

V2
A

V3R

V1

(a) Construction

B

Fig. 6.4 Basic NOR Gate Latch or RS (or SR) Flip-Flop

Now if S = 0 and R = 1, output of gate-A goes low i.e. Q = 0. The Q is connected to
input of gate-B along with S input. Thus with Q = 0 both the inputs to NOR gate B are LOW.

As a result Q 1.= This Q and Q are complementary. Since Q = 0 the flip-flop is said to be
in “reset state”. This is indicated by the second row of the truth table.

Now if S = 1 and R = 0 output of gate-B is LOW, making both the inputs of gate-A LOW,

consequently Q = 1. This is “set state”. As Q = 1 and Q 0,= the two outputs are complementary.
This is shown in third row of truth table.

When S = 1 and R = 1, output of both the gates are forced to Logic 0. This conflicts

with the definition that both Q and Q must be complementary. Hence this condition must
not be applied to SR flip-flop. But if due to some reasons S = 1 and R = 1 is applied, then
it is not possible to predict the output and flip-flop state is said to be indeterminate. This
is shown by the last row of truth table.

It is worth to devote some time to investigate why S = R = 1 results indeterminate state
while we said earlier that output of both the gates go LOW for this input. This is true due
to the logic function of NOR gate that if any of the input is HIGH output is LOW. In the

circuit of Fig. 6.4 (b) both Q and Q are LOW as long as S and R are High. The problem occurs
when inputs S and R goto LOW from High. The two gates can not have exactly same
propagation delay. Now the gate having smaller delay will change its state to HIGH earlier
than the other gate. And since this output (i.e. Logic 1) is feeded to the second gate, the output
of second gate is forced to stay at Logic 0. Thus depending upon the propagation delays of
two gates, the flip-flop attains either of the stable states (i.e. either Q = 1 or Q = 0). Therefore
it is not possible to predict the state of flip-flop after the inputs S = R = 1 are applied. Thats
why the fourth row of truth table contains a question mark (?). For the above reasons the
input condition S = R = 1 is forbidden.

218 Switching Theory

The NAND Gate Flip-Flop

The NOT gate latch shown by Fig. 6.5 (b) may also be modified by replacing each
inverter by a 2-input NAND gate as shown in Fig. 6.5 (a). This is a slightly different latch

(a) Construction

A

B
Q

QS

R

R esulting S ta te

Las t S tate or N o
C ha nge a t outp ut

R eset S tate

Se t S ta te

Ind eterm inate
or F orb idden S tate

S

1 1

01

1

0

0

?0

0

Q

O ut-
put ‘Q ’R

1

(b) Tru th Tab le

Q

(c) Log ic Sym bo l

S Q

R

Fig. 6.5 NAND Gate Latch or S , R Flip-Flop

from the NOR latch. We call it S R latch. The truth table (Fig. 6.5(b)) summarizes the
operation and Fig. 6.5(c) shows the logic symbol for SR latch.

The name SR is given to this latch to indicate that intended operation is achieved on
asserting logic ‘0’ to the inputs. This is complementary to the NOR latch in which operation
is performed when input is logic ‘1’.

The explanation of operation of SR flip-flop lies in the statement that, If any input of
NAND gate goes LOW the output is HIGH, whereas a ‘1’ at any NAND input does not affect
the output. Moreover, the output will be LOW only and only when all the inputs to NAND
gate are HIGH.

When both S and R are HIGH i.e. S = R = 1, then the NAND output are not affected.

Thus last state is maintained. When S = 1 and R = 0 then output of gate-B goes HIGH
making both the inputs to NAND-A as HIGH. Consequently Q = 0 which is reset state. In

the similar way S = 0 and R = 1 bring the circuit to set state i.e. Q = 1. When both the

inputs are LOW i.e. S = R = 0 both Q and Q are forced to stay HIGH which inturns lead
to indeterminate state for the similar reasons given for NOR latch.

The SR flip-flop can be modified further by using two additional NAND gates.

These two gates, labelled as C and D, are connected at S and R Fig. 6.5 (a) inputs to
act as NOT gate, as shown in Fig. 6.6 (a). This converts SR latch into a latch that behaves
exactly same as the NOR gate flip-flop (i.e. NOR latch), shown in Fig. 6.4 (b). Hence this
latch also is referred as SR flip-flop. The truth table and logic symbol will be same as that
of NOR latch. The truth table may also be obtained by inverting all the input bits in SR
truth table shown in Fig. 6.5 (b) as input to SR latch is complemented. To understand the
operation of this latch, consider the Fig. 6.6 (a).

When both S and R inputs are LOW outputs of NAND gates C and D are HIGH. This
is applied to the inputs of SR latch which maintains the last state in response to S = R = 1

(see Fig. 6.5 (b)). In the same way, application of S = 0 and R = 1 results S = 1 and R = 0 ,
and consequently the latch attains “Reset State”. Similarly the other input combination in
truth table can be verified.

Synchronous (Clocked) Sequential Circuits 219

(b) Construction

R Q

S QS

R

C

D

(a) M od ification in S R F lip-F lop

S

AC

D
B

Q

R

S Q

Q

(d) Log ic Sym bo l
(c) Tru th Tab le

R esulting S ta te

Las t S tate pre se rved
C ha nge a t outp ut or N o

R eset S tate or
Low State

Se t S ta te or
H igh S tate

Ind eterm inate
or F orb idden S tate

S

0 0

00

0

1

1

?1

1

Q

O ut-
put QR

1

Q

R

Fig. 6.6 NAND Gate Latch or SR Flip-Flop

At this point we advice readers to verify the truth table of SR latch through the NAND
gate construction of this latch, shown in Fig. 6.6 (b).

For the beginners it is worth to go back to the beginning of this article (i.e. start of
6.1.1). Infact the SR (or RS) flip-flop gives the basic building block to study and analyze
various flip-flops, and their application in the design of clocked sequential circuits.

Example 6.1. Draw the internal block diagram alongwith pinout for IC 74LS279, a
quad set reset latch. Explain its operation in brief with the help of truth table.

Sol. Fig. 6.7 shows the required block diagram and pinout.

1 2 3 4 5 6 7 8

R S1 S2 Q R S1

16 15 14 13 12 11 10 9
Vcc S1 R Q S1 S2 R Q

G NDQ

Fig. 6.7 IC 74LS279, A Quad Set Reset Latch

From the figure it is evident that the IC contains 4 SR latch shown earlier in Fig. 6.5.
Two flip-flops have two inputs, named S R1, are exact reproduction of SR latch shown in
Fig. 6.5. Remaining two flip-flops have three inputs labelled S S R,1 2, , in which instead of
single S input we get two set inputs S and S1 2. Since the latches are constructed by NAND
gates a LOW either on S1 or on S2 will set the latch. Truth table summarizing its operation

220 Switching Theory

is shown in Fig. 6.8. Not that making R = 0 and either of S and S1 2 LOW, leads to
indeterminate state.

1

2

3

R

S1

S2

S

Set S tate

Reset s ta te

Last S tate

Inde te rm inate

Inde te rm inate

Q

1

1

?

?

×

×

×

×

1 1

1

Q

11

0

0

RS2S1

Set S tate

Resu lting S tate

1

1

0

0

0

00

0

Fig. 6.8 Truth Table; ‘X’ → don’t care Fig. 6.9 Converting S and S1 2 into S

Also if S and S1 2 are shorted (or tied) together, as shown in Fig. 6.9, the two set inputs
can be converted into single set input S . When S and S1 2 are shorted together, the latch
exactly becomes SR flip-flop of Fig. 6.5.

6.1.2 D Flip-Flop
The SR latch, we discussed earlier, has two inputs S and R. At any time to store a bit,

we must activate both the inputs simultaneously. This may be troubling in some applications.
Use of only one data line is convenient in such applications.

Moreover the forbidden input combination S = R = I may occur unintentionally, thus
leading the flip-flop to indeterminate state.

In order to deal such issues, SR flip-flop is further modified as shown in Fig. 6.10. The
resultant latch is referred as D flip-flop or D latch. The latch has only one input labelled D
(called as Data input). An external NAND gate (connected as inverter) is used to ensure that
S and R inputs are always complement to each other. Thus to store information in this latch,
only one signal has to be generated.

D Q

Q

(d) Log ic Sym bo l

(b) Construction(a) M od ification in S R F lip-F lop

R Q

S Q

E

D AC

D
B

Q

E

Q
D

Resu lting S tate

Reset S tate or
Low S ta te

Set S tate o r
H igh S ta te1

Q

(c) Tru th Tab le

00

1

D

Fig. 6.10 D Flip-flop or D latch

Synchronous (Clocked) Sequential Circuits 221

Operation of this flip-flop is straight forward. At any instant of time the output Q is
same as D (i.e. Q = D). Since output is exactly same as the input, the latch may be viewed
as a delay unit. The flip-flop always takes some time to produce output, after the input is
applied. This is called propagation delay. Thus it is said that the information present at point
D (i.e. at input) will take a time equal to the propagation delay to reach to Q. Hence the
information is delayed. For this reason it is often called as Delay (D) Flip-Flop. To understand
the operation of this latch, considr Fig. 6.10 (a).

As shown in figure, the D input goes directly to S and its complement is applied to R
input. When data input is LOW i.e. D = 0, we get S = 0 and R = 1.50 flip-flop reaches to
RESET State where Q = 0. When D = 1 the S input receives 1 and R = 0. Thus the flip-
flop goes to SET state, where Q = 1. This operation is summarized in truth table, shown
in Fig. 6.10 (c). It is interesting to note that the next state of D flip-flop is independent of
present state. It means that if input D = 1 the next state will be SET state, weather
presently it is in SET or RESET state.

Furthermore, by Fig. 6.10 (a) it is clear that the external inverter ensures that the
forbidden condition S = R = 1 will never arrive. The D flip-flops are popularly used as the
delay devices and/or latches. In general, simply saying latch means a D flip-flop.

Example 6.2. A logic circuit having a single input labelled X, and two outputs Y1 and
Y2 is shown in fig. 6.11. Investigate the circuit and find out does this circuit represents a
latch? If yes, then name the latch and draw the truth table for this circuit.

Sol. To investigate the circuit, we find out values of outputs Y1 and Y2 for each and
every possibility of input X.

A carefully inspection of circuit reveals that the portion of the circuit which consist of
two NAND gates A and B

AC

B

S R La tch

Y 1

Y2

X

S Q

R Q

C
X

Y1

Y2

Fig. 6.11 Logic Circuit for Example 6.2 Fig. 6.12 Simplified circuit for Fig. 6.11

represent SR flip-flop. This portion of the circuit is surrounded by dotted lines in Fig. 6.11.
The circuit is redrawn in Fig. 6.12 for simplicity. This simplification shows that input to
S is X and input to R is X or S = X and R = X. The outputs Y1 and Y2 are nothing but the
Q and Q outputs SR latch i.e. Y1 = Q and Y = Q. Thus the outputs Y1 and Y2 are always
complimentary..

Hence when the input X is LOW i.e. X = 0, it results in S 1= and R 0.= The latch is

forced to reset state, in which case Q = 0 and Q = 1, consequently Y1 = 0 and Y2 = 1. Thus

for X = 0 we get Y1 = 0 and Y2 = 1. In the similar way when X = 1, S = 0 and R = 1 making
Y1 = 1 and Y2 = 0 which is set state. We now summarize these results in a truth table shown

222 Switching Theory

in Fig. 6.13. From the truth table it is clear that Y1 = X and Y X2 = . Thus the given circuit

represents a D Latch which gives Q = D and Q = D. In the Figs. 6.11 and 6.12 the input

D is renamed as X and the outputs Q and Q are named as Y1 and Y2 respectively.

X S R Q Q Y = Q1

0 0 0 01

1

11

0 1 1 0 1 0

Y = Q2

(a)

1 1

10 0

0

X Y2Y1

(b)

Fig. 6.13 Truth Table for Fig. 6.12

In Fig. 6.12, if the output of gate C is connected to R and input X is directly connected

to S then Y1(= Q)= X and Y Q) X.2 (= = Therefore the circuit may be referred as inverted
D latch.

6.1.3 Clocked Flip-Flops
All the flip-flops discussed earlier are said to be transparent, because any chance in

input is immediately accepted and the output changes accordingly. Since they consist of logic
gates along with feedback they are also regarded as asynchronous flip-flops.

However, often there are requirements to change the state of flip-flop in synchronism
with a train of pulses, called as Clock. In fact we need a control signal through which a flip-
flop can be instructed to respond to input or not. Use of clock can serve this purpose.

T

(b)

tO F F

T

(a)

tO N tO N

tO F F

Fig. 6.14 Representation of Pulse

A clock signal can be defined as a train of pulses. Essentially each pulse must have two
states, ON state and OFF state. Fig. 6.14 shows two alternate representation of a pulse, and
Fig. 6.15 shows a clock signal. The clock pulses are characterized by the duty cycle, which
is representative of ON time in the total time period of pulse, and is given as:

Duty Cycle = D = t
t t

tON

ON OFF

ONor D
T+

=

In the digital systems we need a clock with duty cycle D ≤ 50%. The OFF time of a
pulse is also referred as bit-time. This is the time in which flip-flop remains unaffected in
either of two stable states. The state of latch during this time is due to the input signals
present during ON time of pulse.

State Qn + 1 is due to the inputs present during ON time of (n + 1)th pulse i.e at
t = nT. In the analysis and discussion we adopt the designation Qn to represent “present
state” which is the state before the ON time of (n + 1)th pulse or state just before the time
t = nT in Fig. 6.15, and Qn + 1 as “next state” i.e. the state just after the ON time of

Synchronous (Clocked) Sequential Circuits 223

(n + 1)th clock pulse. Thus Qn represents the state (or output) in bit time n and Qn + 1
represents the output Q in bit time n + 1, as shown in Fig. 6.15.

Bit-TIME
Bit-Time

n
n + 1

Qn+1
state

Qn
state

1 B it-Tim e
3

1 B it-Tim e
2

Bit-Time
1

1st Pu lse
tO N tO F F

tO F FtO N tO N

2nd Pu lse 3rd P ulse 4 th n th Pulse
(n+1)th
Pu lse

(n+2)th
Pu lse

(n+3)th
Pu lse

O T 2T 3T (n–1)T nT (n+1)T (n+2)T tim

H igh

Low

tO N tO N
t O F F

Fig. 6.15 Clock Signal-Pulse Train of Shape shown in Fig. 6.14 (b).

As we said earlier, the clock pulse can be used as a control signal. It allows the flip-
flop to respond to inputs during tON period of clock, it is called enabling the flip-flop. Where
as the flip-flop is instructed, not to respond to inputs during tOFF period of clock, i.e. flip-flop
maintains its output irrespective of changes in input. This is called disabling the flip-flop.

In this way it is possible to strobe or clock the flip-flop in order to store the information
at any time said alternately clocking allow us to selectively enable or disable the flip-flop
which is a necessary requirement in large digital systems.

Clocked SR Flip-Flop: A simple way to get a clocked SR flip-flop is to AND the inputs
signals with clock and then apply them to S and R inputs of flip-flop as shown in fig. 6.16
(a). For the simplicity SET and RESET inputs of unclocked SR latch are labelled S1 and R1
respectively. Where as external inputs are labelled S and R.

S1 Q

R1 Q

G1

G2

S

CLK

R

CLK Q n Sn Rn Q n+1 Comm ents

0 0

0 0 0 0

000

0 0

0

0

1

1

1

1

1

1

1

1 1 1 1 ?

111

1

1

0

10 × × 1

0××

?

0

1

1

0

0

1

1

1

1

1

Flip-F lop d isabled no change
 in state and las t s tate m ain ta ined

Last S tate Q n+1=Q n

Reset s ta te

Set s ta te

Inde te rm inate

Last s ta te Q n+1=Q n

Reset s ta te

Set s ta te

Inde te rm inate

(a) Construction of clocked Sr flip-flop. (b) Tru th Tab le

(c) Chare terigtic Equation

S Q

R Q

CLK

(d) Log ic Sym bo l

1

1

×

×

11

Q n
0

00 1101 10

Q =S +R Qn +1 n n n

S R =0n n

Q S Rn +1 n n

Fig. 6.16 Clocked RS (or SR) Flip-Flop

224 Switching Theory

When clock (abbreviated as CLK) is LOW, outputs of gates G1 and G2 are forced to 0,
which is applied to flip-flop inputs. Thus when CLK = 0, S1 = 0 and R1 = 0. Since both the
inputs are LOW, flip-flop remain in its previous state. Alternatively if Qn = 0, Qn + 1 = 0 and
if Qn = 1 we get Qn + 1 = 1. Thus during tOFF period inputs have no effect on the circuit. This
is shown in first two rows of truth table given in Fig. 6.16 (b).

When clock is HIGH, gates G1 and G2 are transparent and signals S and R can reach
to flip-flop inputs S1 and R1. The next state will now be determined by the values of S and
R. Thus during tON point CLK = 1 causing S1 = S and R1 = R and the circuit behaves exactly
same as the normal flip-flop discussed in subsection 6.11, as shown by rest of the rows of
truth table.

Note that in truth table, inputs are labelled Sn, Rn. They represent the value of inputs
during bit-time ‘n’ at the tON time of (n + 1)th pulse or at t = nT in Fig. 6.15. The output
also is Qn + 1 not simply Q. Because presence of clock pulses force us to consider two different
instants of time : the time before application of pulse, Qn (i.e. present state) and the time
after the application of pulse, Qn + 1 (i.e. next state).

Characteristic equation for this flip-flop is obtained from K-map shown in Fig. 6.16 (c),
which is an algebric expressions for the binary information of the truth table. This expression
gives the value of next state as a function of present state and present inputs. The
indeterminate conditions are marked “X”-don’t care in the map because, depending upon the
propagation delay of logic gates, state can be either 1 or 0. Inclusion of relation Sn.Rn = 0
as a part of characteristics equation is due to the requirement that both Sn and Rn must not
be made 1 simultaneously.

Finally, the logic symbol of clocked SR flip-flop is shown in Fig. 6.16 (d), which now has
three inputs named S, R and CLK.

(a)

Q

Q

S

R

CLK

Q

Q
S

R

CLK

(b)

Fig. 6.17 Two Different Realizations of Clocked SR Flip-Flop.

Figure 6.17 shows two alternate realizations of clocked SR flip-flop. Both the realizations are
popularly used in MSI and LSI (Medium and Large Scale Integrated) circuits. In many texts
the signal CLOCK is also labelled ENABLE or EN.

Example 6.3. Fig. 6.18 (a) shows the input waveforms S, R and CLK, applied to clocked
SR flip-flop. Obtain the output waveform Q and explain it in brief. Assume flip-flop is resent
initially.

Sol. The resulting waveform at the output Q is shown in Fig. 6.18 (b). To understand
the output waveform, recall that the inputs affect the flip-flop only when the clock = 1
otherwise flip-flop maintains its previous output irrespective of present input.

Initially at t = 0 flip-flop is reset i.e. Q = 0. At this time S = 1 and R = 0, but flip-flop
remains unaffected since CLK = 0.

Synchronous (Clocked) Sequential Circuits 225

(b) Resu ltan t outpu t wave fo rm s

0

1

t1 t2 t3 t4 t5 t6

t8

t7 t9 t1 0 t11

CLK

0

1

1

0
R

S

Q

1

0

t

(a) G iven Inputs and C lock Wavefo rm s

Fig. 6.18 Waveforms for Example 6.3

At t1 clock goes HIGH and output also goes HIGH i.e. Q = 1 since S = 1 and R = 0
at this time. At time t2 CLK = 0 and flip-flop remain SET untill t3, irrespective of changes
in S and R.

At time t = t3 CLK = 1 and because S = 0 and R = 1 at this instant, we get Q = 0. At
t4 both inputs are LOW while clock is still HIGH. Since S = R = 0 at this instant flip-flop
remains reset untill just after time t5.

Just after t5 S goes HIGH making Q = 1. At time t6 clock switches to LOW state. Just
before this HIGH to LOW transition of clock S = 1 and R = 0 and Q = 1. Thus flip-flop remains
set untill t7. Changes in R and S does not affect flip-flop during t6 to t7 as CLK = 0.

At t = t7 clock goes HIGH, at which time R = 1 and S = 0. So flip-flop enters in reset
state. Q = 0 is retained untill t8 where R switches to 0 and S switches to 1. Therefore
Q = 1 at this time.

Clock goes LOW at t9 and since Q = 1 just before clock goes LOW, flip-flop remains set
untill t10 where clock goes HIGH again. The inputs S and R changes during time between
t9 to t10, but can not affect the output since CLK = 0.

At t = t10 clock goes HIGH and since R = 1 and S = 0 at t10, the flip-flop attains reset
state. At the time t = t11 clock goes LOW and still R = 1 and S = 0 was maintained at the
input, the flip-flop remains in LOW state beyond t11.

Clocked SR Flip-flop with Clear and Preset
When the power is first applied to the flip-flop, it come up in random state i.e. state

of circuit is uncertain. It may be in SET state or in RESET state. This is highly undesired
in majority of application. There are requirements that the flip-flop must be in a particular
state before the actual operation begins. In practice it may be required to preset (Q = 1) or

226 Switching Theory

clear (Q = 0) the flip-flop to start the operation. In flip-flops such provisions can easily be
provided for this purpose.

(a) Construction

S

R

Q

Q
R

CLK

S

P (Preset)R

CLR(C lear)

CLK CLKPR
O ut-
Put Q

0

0

0

0 0

0

0

?

Q n + 11

1

1

0 1

1

1

Resu lting S tate

C lear o r Rese t

Preset or Set

Inde te rm inate

Norm al Flip -Flop
Next s tate is due
to S R inpu ts:

(b) Tru th table

S

CLK

R

P R

CLR Q

(c) Log ic Sym bo l

Q

Fig. 6.19 SR Flip-Flop with ‘CLEAR’ and ‘PRESET’

Q

QS

R

CLK

PR

CLR

S

CLK

R

PR

CLR

(c) Log ic Sym bo l

Q

Q

(a) Construction (b) Tru th Tab le

CLK CLRPR
O ut-
Put Q

0

0

0

1 1

0

?

Q n + 11

0

10

1 0

0

1

Resu lting S tate

C lear

Preset or Set

Inde te rm inate

Norm al Flip -Flop
Next s tate is
dete rm ined

by S R inputs:

1

Fig. 6.20 Alternate Realization of ‘CLEAR’ and ‘PRESET’ with SR Flip-Flop

Synchronous (Clocked) Sequential Circuits 227

Two different realizations to accommodate a preset (abbreviated as PR) and a clear
(abbreviated as CLR) inputs are shown in Figs. 6.19 and 6.20. The PR and CLR are direct
inputs and are called asynchronous inputs; as they don’t need the clock to operate. Both
of the above circuits require that PR and CLR inputs should be applied only in absence of
clock otherwise unexpected behaviour can be observed. More over both PR and CLR should
not asserted at same time as it leads to indeterminate state. Logic values to be applied to
preset and clear are accommodated in the truth tables. Before starting normal clocked
operation the two direct inputs must be connected to a fix value as shown by the last entries
of corresponding truth tables. The logic symbols for the two circuits are also shown in the
figure.

In Fig. 6.19, due to the construction of circuit the flip-flop can be preset or clear on
the application of Logic 1 at PR or CLR respectively. In contrast, realization shown in fig.
6.20 demands a Logic 0 to be applied at the particular asynchronous input, in order to
perform the intended operation. For normal operation these inputs must be connected to
Logic 1, as indicated by the last row of truth table shown in Fig. 6.20 (b). Similarly in fig.
6.19 the PR and CLR must be connected to Logic 0 to obtain normal flip-flop operation.

The circuits proposed in Figs. 6.19 and 6.20 requires that the PR and CLR should only
be applied when clock is LOW. This imposes a restriction to use these two signals. An
improvement may be considered to remove this restriction.

Fig. 6.21 shows a clocked SR flip-flop with preset and clear (P and CLRR) inputs that

can override the clock. P and CLRR can be safely applied at any instant of time weather
clock is present or not.

CLK CLRPR
O ut-
Put Q

Resu lting S tate

0 01 C lear

0

0 0

11 1

Norm al Flip-Flop
Next state is
dete rm ined by
S and R Inpu ts.

Inde te rm inate

Preset

?

Qn + 1

11

(b) Tru th Tab le

×

×

×

Q

Q

R

CLK

PR

CLR

EA
C

D B F

S

(a) Construction

Fig. 6.21 SR Flip-Flop with Clock Override ‘Clear’ and ‘Preset’

As shown in figure two AND gates, E and F, are used to accommodate preset (P)R and

Clear (CLR) inputs. The truth table summaries the effect of these asynchronous inputs in the

circuit. Output Q is provided through gate E whereas Q is output of gate F. Both PR and CLR
are active LOW signals i.e. asserting Logic ‘0’ at these inputs perform the intended operation.

According to first row of truth table when CLR = 0 and PR = 1 is applied then irrespective
of the value of S, R and CLK, output of gate E is 0. Thus Q = 0 and it is feeded to the input
of NAND gate B. So output of NAND-B is 1 which is applied to the input of gate F. Since

we applied PR = 1, both the inputs to AND gate F are HIGH. Consequently the output of gate

228 Switching Theory

F goes HIGH, which is available at Q output of flip-flop. Hence when PR = 1 and CLR = 0

is applied, we get Q = 0, and Q = 1. This is frequently called as clearing the flip-flop.

Similarly when PR = 0 and CLR = 1 is applied, output of gate F, which is Q, goes LOW

i.e. Q = 0. This forces the gate-A to give HIGH output. Since CLR = 1 is already present,

output of gate E, which is Q, goes HIGH. Thus when PR = 0 and CLR = 1 is applied we get

Q = 1 and Q = 0 , which is required state. This is referred as presetting.

Since both PR and CLR are active LOW inputs, they must be connected to Logic 1, in
order to obtain normal flip-flop operation as shown by fourth row of truth table. Also making
both PR and CLR LOW is forbidden as it results in indeterminate state, for the similar
reasons explained earlier.

Clocked D Flip-Flop
In subsection 6.1.2 we obtained a D flip-flop by using an external inverter present at

the input of SR latch as shown in Fig. 6.10 (a). In the similar way a clocked D flip-flop is
obtained by using an external inverter at the input of clocked SR flip-flop. The clocked D
flip-flop is shown below in Fig. 6.22. Note that unclocked RS latch of Fig. 6.10 (a) is replaced
by a clocked RS flip-flop shown in Fig. 6.16 (d).

S Q

R Q

CLK

(a) M od ification in c locked
S R Flip -Flop

(b) Construction

Q

Q

R

CLK

E D

C A

B

D

1

0

0

11

(c) Tru th Tab le

×

CLK

11 1 1

0 0

1 11

1

0

0 0 × 0

1

Set S tate

Comm ents

Flip -Flop
D isabled
last s ta te
M aintained

Rest S ta te

Set S tate

Reset S tate

Q n + 1Q n D n

1

1

0

0

1

Q n

Q n + 1

D n 1

Q =Dn + 1 n

CLK

D Q

Q

(d) Characteristic (e) Log ic Sym bo l

D

0 0

Fig. 6.22 Clocked D Flip-Flop Equation

The characteristics equation is derived from K-map shown in Fig. 6.22 (d), which
specifies that irrespective of previous state next state will be same as the data input. In
truth table Dn represents the data input at the tON time of nth pulse.

Synchronous (Clocked) Sequential Circuits 229

The operation of clocked D flip-flop is same as explained in subsection 6.1.2, when
CLK = 1. When CLK = 0, the D input has no effect on the flip-flop and the present state
is maintained. This is evident by the first two rows of truth table. The Logic symbol of
clocked D flip-flop is shown in Fig. 6.22 (e).

Similar to clocked SR flip-flops, the clocked D flip-flop may also be accommodated
with the asynchronous inputs “preset” and “clear”. One particular realization is shown in
Fig. 6.23. An alternative arrangement to obtain a D flip-flop, directly from SR flip-flop with
clear and preset is shown in Fig. 6.24.

(a) Construction

S

R

Q

Q

CLK

D

P R

CLR

D

CLK

P R

CLR Q

Q

(b) Log ic Sym bo l

Fig. 6.23 D Flip-Flop with Clear and Preset

(b) Log ic Sym bol

D

CLK

PR

CLR Q

Q

(a) M od ification in S R F lip-F lop

CLK

P R

CLR Q

QS

R

D

Fig. 6.24 Alternate Realization of Clear and Preset in D Flip-Flop

On comparing Fig. 6.23 (a) with Fig. 6.19 (a), we find that both the circuits are same
except that, in two external inputs are connected together through an inverter placed
between them. Thus both the circuits behave similarly and explanation of Fig. 6.19 (a) is
equally valid in this case. Similarly, the arrangement shown in Fig. 6.24 (a) is built upon
the clock SR flip-flop shown in Fig. 6.20 (c).

Example 6.4. In a certain digital application it is required to connect an SR flip-flop
as toggle switch, which changes its state every time when clock pulse hits the system. Show
the arrangement and explain in brief how it works as a toggle switch.

Sol. SR flip-flop can be connected as a toggle switch as shown in Fig. 6.25. On the
arrival of CLOCK pulse this arrangement forces the flip-flop either to go to SET state if
currently it is RESET or to RESET state if currently it is SET.

As shown, a feedback path connects the output Q to R input while another feedback
path connects the Q to input S. Recall that the state of flip-flop can be changed only when
the CLK = 1 and the last state reached, is maintained while CLK = 0.

230 Switching Theory

CRK

S

R

Q

Q

Fig. 6.25 SR Flip-Flop Connected as Toggle Switch

To start let the flip-flop is initially reset, i.e. Q = 0 and Q = 1. Same time due to the
feedback, applied inputs are S = 1 and R = 0 because S = Q and R = Q.

As soon as the clock goes HIGH flip-flop enters into SET state i.e. Q = 1 and Q = 0.

Thus the inputs would be S = Q = 0 and R = Q = 1 because of feedback path and remain
unchanged untill the next clock pulse arrives.

The moment clock goes HIGH again, flip-flop changes its state and attains RESET state

where Q = 0 and Q = 1. Again through the feedback inputs become R = 0 and S = 1. Note
that this is the initial state we assumed in beginning. Thus after the arrival of two successive

clock pulses, the switch has returned to its initial state Q = 0 and Q = 1.

Therefore, the switch shown in Fig. 6.25 toggle between the two states with clock.
Moreover the switch reproduces its state (either Q = 0 or Q = 1) after two successive clock
pulses has arrived. This does mean that it really does not matter weather the initially
assumed state is Q = 0 or Q = 1.

In practice the feedback paths in Fig. 6.25 may lead to uncertainty of the state. In the
above paragraphs we assumed that the inputs available at S and R do not change during the
tON period of clock. Thus the change in state can occur only once in a single clock pulse,
which is not true. If the propagation delay (tP) of the flip-flop is smaller than the tON time,
multiple transitions (or state changes more than once) can be observed in a single clock
pulse. Hence at the end of clock pulse the state of flip-flop is uncertain. This situation is
referred as race-around condition.

Race around has resulted because the flip-flop remains transparent as long as CLK =
1 (or for entire tON time). At this point we refrain ourselves from discussing it further. We
address the complete discussion on it, only after examining and identifying the similar
situations in various flip-flops.

Example 6.5. Realize a toggle switch, that changes its state on the arrival of clock, by
using a D flip-flop. Explain its operation briefly.

Synchronous (Clocked) Sequential Circuits 231

Sol. Fig. 6.26 shows a D flip-flop configured to work as toggle switch when clock is
applied.

CLK

Q

Q

D

Fig. 6.26 D Flip-Flop as Toggle Switch

As shown the output Q is connected to D via a feedback path, so that D = Q always. To
understand the operation recall that “in a D flip-flop output at any instant of time, provided
CLK = 1, is same as input.” So Q = D always, if CLK = 1. Furthermore output Q = D, so
through the feedback path complement of data D is now feeded to input. Thus if initially the
flip-flop was reset (Q = 0) the Q = 1 is applied to input through the feedback path. Consequently
D = 1 will be retained untill next clock pulse arrive. As soon as CLK = 1, D = 1 affects the
circuit. This results in change in state of flip-flop giving Q = D = 1 and Q = 0 at the output.
But at the same time Q is feeded to D input due to which input changes to D = Q = 0. On
the arrival of next clock pulse the circuit toggles again and change its state in similar way.

It is evident again from Fig. 6.26 that even this switch also, suffers from the “race
around” problem, explained in example 6.4. The problem is a consequence of the feedback
path present between Q and D. The ouput of this switch races for the same reasons as was
given for SR flip-flop in example 6.4.

6.1.4 Triggering of Flip Flops
By a momentarily change in the input signal the state of a flip-flop is switched. (0-1-

0). This momentarily change in the input signal is called a trigger. There are two types by
which flip-flops can be triggered.

Edge trigger

Level (pulse) trigger

An edge-triggered flip-flop responds only during a clock pulse transition i.e. clock pulses
switches from one level (reference voltage) to another. In this type of flip-flops, output
transitions occur at a specific level of the clock pulse. When the pulse input level exceeds
this reference level, the inputs are locked out and flip-flop is therefore unresponsive to
further changes in inputs until the clock pulse returns to 0 and another clock pulse occurs.
An edge-triggered flip-flop changes states either at the positive edge (rising edge) or at the
negative edge (falling edge) of the clock pulse on the control input.

When the triggering occurs on the positive going edge of the clock, it is called positive
edge triggering and when the triggering occurs at the trailing edge of the clock this is called
as negative edge triggering.

232 Switching Theory

The term pulse-triggered or level triggered means that data are entered into flip-flop
on the rising edge of the clock pulse, but the output does not reflect the input state until
the falling edge of the clock pulse. As this kind of flip-flops are sensitive to any change of
the input levels during the clock pulse is still HIGH, the inputs must be set up prior to the
clock pulse’s rising edge and must not be changed before the falling edge. Otherwise,
ambiguous results will happen.

6.1.5 JK and T Flip-Flops
Problem of SR flip-flop to lead to indeterminate state when S = R = 1, is eliminated

in JK flip-flops. A simple realization of JK flip-flop by modifying the SR type is shown in Fig.
6.27 (a). In JK the indeterminate state of SR flip-flop is now modified and is defined as
TOGGLED STATE (i.e. its own complement state) when both the inputs are HIGH. Table
shown in Fig. 6.27 (b), summarizes the operation of JK flip-flop for all types of input
possibilities. Characteristic equation in Fig. 6.27 (c) is derived from K-Map, filled by the data
provided by truth table.

Truth table shows the input applied from external world (J and K). It also shows the
flip-flop inputs S and R and the whose values are due to the modification and in accordance
with the values of J and K. Input signal J is for Set and K is for RESET. Both J and K are
ANDED with Q and Q respectively to generate appropriate signal for S and R. Since Q and
Q are always complementary, only one of the AND gates (Fig. 6.27 (a)) is enable at a time.
So either only J or only K can reach to one of S and R inputs, thus any one of inputs will
receive the data to be stored. While the other AND gate is disabled i.e. its output is 0, thus
second input of SR flip-flop will always be 0. Thus indeterminate state never occurs even
when both J and K inputs are HIGH.

Q

QS

CLK

R

J

K KQ

JQ

(a) Realization o f JK
 F lip -F lop from S R Flip -Flop

1 1

111

01 11 1000

0
Q n

Q n + 1 J Kn n

Q =J .Q +K Qn + 1 n n n n

(c) Characte ris tic E quation

CLO
CK

Present
State

Exte rna l
Inpu ts

Flip -Flop
Inpu ts

O utpu t o r
Next s tate

1

1 1 1 1 1 000

1 1 1 1 1 10

1 1 0 1 0 0 0 1

1 1 1 1 1

1 1 1 1 0000

0 0 1 000× ×

0 1 0 × × 0 0 1

1 0 1 0 0 0 0 0

0000011 1

1 1 0 0 0
0

00

Q n

Q n + 1CLK Q n Q n Jn Kn S n R n

Q n

Q n

1

Resu lting
sta te

Flip -Flop D isa-
b led for CLK=0,
no change

No change at
output. P resen t
sta te becom es

next s ta te

Reset s ta te

Set S tate

Toggled sta te
next s ta te is
com plement
o f p resent state

0

000

(b) Deta iled tru th table

Fig. 6.27 JK Flip-Flop Through SR Flip-Flop

Synchronous (Clocked) Sequential Circuits 233

(b) Log ic Sym bo l

CLK

Q

QK

J

(a) Construction

Q

Q

J

CLK

KQ

JQ

K

Fig. 6.28 Clocked JK Flip-Flop

(a) Construction

Q

Q

CLK

KQ

JQJ

K

CLR

PR

CLK

Q

QK

J

CLR

PR

(b) Log ic Sym bo l

Fig. 6.29 JK Flip-Flop with Active LOW Preset and Clear

As an example assume that initially Qn = 0, Q 1n = and inputs applied are J = 1 and
K = 0. So we get Sn = J. Q 1n = and Rn = K. Qn = 0. Application of S = 1 and R = 0, when
clock arrives, switches the state of flip-flop HIGH. Now if we assume Qn = 1. Q 0n = with
same J and K, inputs result in Sn = Jn.Q 0n = and Rn = KnQn = 0 applied to SR Flip-flop. When
both the S and R inputs are LOW flip-flop does not under go any change of state. So Qn +1
= Qn = 1. These two inputs are shown in 7th and 8th row of truth table. In the similar way
entries in other rows of truth table can be verified.

Note that when both inputs are HIGH (i.e. J = 1 and K = 1) then, in Fig. 6.27 (a), we find
that now S = J = Q and R = K = Q. Thus it is evident that the two external AND gates become
full transparent and circuit may be viewed as if Q is connected to S input and Q connected to
R input. Thus at J = K = 1 flip-flop behaves as an SR toggle switch shown in Fig. 6.25.

Note : Asynchronous inputs P and CLRR must not be activate when clock is present,
other wise unexpected behaviour may be observed. Hence all the discussions presented in
example 6.4 for toggle switch is equally valid for JK flip-flop when both J and K are HIGH.

Furthermore, when J = K = 1 then due to the two feedback paths the output may start
racing around the inputs causing multiple transitions. Thus “Race Around” condition may
occur in JK flip-flop when both inputs are HIGH, for the similar reasons given in example 6.4.

Two gate level constructions for the JK flip-flop is shown in Fig. 6.28 (a) and 6.29 (a)
along with their logic symbols shown in figure (b) in each figures.

234 Switching Theory

1 1 1 00

0 0×

× 1

0 0 0 0

00001 1

1

Q n

Q n + 1Q n T n Jn Kn

Q n

R esulting
s tate

F lip-F lop D isa-
b led fo r C L K=0,
no cha nge n ext
s ta te=p resent

Toggled s ta te or
com plem e nted
s tate n ext sta te
=present s ta te

Next state
O ut-pu tApplied InputsPresent

StatesCLK

M aintain O ut-put
sta te no change
in out-put next

sta te=present sta te

0 1 × ×

0

Q n

1 0 × ×

1 0 1

1

1 10 1 11

1 1
Q n

(d) Construction w ith active
low c lear & p rese t

Q

Q

CLK

TQ

TQ

CLR

PR

CLK

Q

Q

T

CLR

PR

(e) Log ic Sym bo l

1

1

10

0

1

Q n + 1

Tn

Q =T Q +T Qn + 1 n n n n

(c) Character is tic
Equation

CLK

Q

Q

J

(a) Realization o f T
 F lip -Flop from J K

K

(b) Detailed tru th tab le

T

T

Fig. 6.30 Clocked T (Toggles) Flip-Flop with Active LOW Asynchronous Inputs

The JK flip-flops are very popular as indeterminate state (as present in SR type) does
not exist. Furthermore, due to the toggling capability, when both inputs HIGH, on each
arrival of pulse, it forms the basic element for counters. For this purpose JK flip-flop is
further modified to provide a T flip-flop as shown in Fig. 6.30.

T flip-flop is a single input version of JK flip-flop, in which the inputs J and K are
connected together, as shown , and is provided as a single input labelled as T. The operation
is straight forward and easy, and summarized in truth-table given in Fig. 6.30 (b), while
characteristic equation is derived in Fig. 6.30 (c).

When the clock is absent, the flip-flop is disable as usual and previously latched output
is maintained at output. When the clock is present and T = 0, even though flip-flop is enabled
the output does not switch its state. It happens so because for T = 0 we get J = K = 0 and thus
next state is same as present state. Thus if either CLK = 0 or T = 0, state does not change
next state is always same as present state.

When T = 1 during CLK = 1, it causes J = K = 1 and as earlier discussed it will toggle
the output state. Thus when input T is HIGH, flip-flop toggles its output on the arrival of
clock, and for this reason input T is called as the Toggle Input. Essentially the T flip-flop
also, suffer from race around condition, (when input is HIGH) and thus causing multiple
transition at output due to same reasons given in example 6.4.

Synchronous (Clocked) Sequential Circuits 235

If the race around problem is some how eliminated then T flip-flop can be used as
frequency divider circuit. To obtain such operation input T is permanently made HIGH and
the frequency to be divided is applied CLK inputs. At the outputs Q and Q we receive a
square wave whose time period is now doubled due to which frequency reduces to half of
the input frequency. Note that Q and Q generate square waves complementary to each
other.

6.1.6 Race Around Condition and Solution
Whenever the width of the trigger pulse is greater than the propagation time of the

flip-flop, then flip-flop continues to toggle 1-0-1-0 until the pulse turns 0. When the pulse
turns 0, unpredictable output may result i.e. we don’t know in what state the output is
whether 0 or 1. This is called race around condition.

In level-triggered flip-flop circuits, the circuits is always active when the clock signal
is high, and consequently unpredictable output may result. For example, during this active
clock period, the output of a T-FF may toggle continuously. The output at the end of the
active period is therefore unpredictable. To overcome this problem, edge-triggered circuits
can be used whose output is determined by the edge, instead of the level, of the clock signal,
for example, the rising (or trailing) edge.

Another way to resolve the problem is the Master-Slave circuit shown below:

Feedback

Inpu ts

C lock C lock

M aste r
FF

Slave
FF

Q

Q

The operation of a Master-Slave FF has two phases:

• During the high period of the clock, the master FF is active, taking both inputs and
feedback from the slave FF. The slave FF is de-activated during this period by the
negation of the clock so that the new output of the master FF won’t effect it.

• During the low period of the clock, the master FF is deactivated while the slave
FF is active. The output of the master FF can now trigger the slave FF to properly
set its output. However, this output will not effect the master FF through the
feedback as it is not active.

Clock

T

Q

Clock

T

Q
?

236 Switching Theory

It is seen that the trailing edge of the clock signal will trigger the change of the output
of the Master-Slave FF. The logic diagram for a basic master-slave S-R flip-flop is shown
below.

S

Clock

R M aster

Q

Q ′

Flip-flops are generally used for storing binary information. One bit of information can
be written into a flip-flop, and later read out from it. If a master-slave FF is used, both read
and write operations can take place during the same clock cycle under the control of two
control signals read and write,

• During the first half of clock cycle : clock = read = write = 1, the old content in
slave-FF is read out, while the new content is being written into master-FF at the
same time.,

• During the second half of clock cycle : clock = read = write = 0, the new content
in master-FF is written into slave-FF.

M S-D-F F

Data- in

W rite

C lock

M S Read

Data-ou t

6.1.7 Operating Characteristics of Flip-flops
The operation characteristics specify the performance, operating requirements, and

operating limitations of the circuits. The operation characteristics mentions here apply to
all flip-flops regardless of the particular form of the circuit.

Propagation Delay Time—is the interval of time required after an input signal has been
applied for the resulting output change to occur.

Set-up Time—is the minimum interval required for the logic levels to be maintained
constantly on the inputs (J and K, or S and R, or D) prior to the triggering edge of the clock
pulse in order for the levels to be reliably clocked into the flip-flop.

Hold Time—is the minimum interval required for the logic levels to remain on the
inputs after the triggering edge of the clock pulse in order for the levels to be reliably
clocked into the flip-flop.

Maximum Clock Frequency—is the highest rate that a flip-flop can be reliably triggered.

Synchronous (Clocked) Sequential Circuits 237

Power Dissipation—is the total power consumption of the device.

Pulse Widths—are the minimum pulse widths specified by the manufacturer for the
Clock, SET and CLEAR inputs.

6.1.8 Flip-Flop Applications

Frequency Division
When a pulse waveform is applied to the clock input of a J-K flip-flop that is connected

to toggle, the Q output is a square wave with half the frequency of the clock input. If more
flip-flops are connected together as shown in the figure below, further division of the clock
frequency can be achieved.

HIG H

CLK

J Q

K Q

Q0
PR

CLR

J Q

K Q

Q 1
PR

CLR

Q 0

Q 1

CLK
1

0

1

0

1

0

The Q output of the second flip-flop is one-fourth the frequency of the original clock
input. This is because the frequency of the clock is divided by 2 by the first flip-flop, then
divided by 2 again by the second flip-flop. If more flip-flops are connected this way, the
frequency division would be 2 to the power n, where n is the number of flip-flops.

Parallel Data Storage
In digital systems, data are normally

stored in groups of bits that represent numbers,
codes, or other information. So, it is common
to take several bits of data on parallel lines
and store them simultaneously in a group of
flip-flops. This operation is illustrated in the
figure below.

Each of the three parallel data lines is
connected to the D input of a flip-flop. Since
all the clock inputs are connected to the same
clock, the data on the D inputs are stored
simultaneously by the flip-flops on the positive
edge of the clock.

D QPR

CLR Q

D 0 Q 0

D QPR

CLR Q

D 1 Q 1

D QPR

CLR Q

D 2 Q 2

C lock

238 Switching Theory

Another very important application of flip-flops is in digital counters, which are covered
in detail in the chapter 7. A counter that counts from 0 to 2 is illustrated in the timing
diagram given below. The two-bit binary sequence repeats every four clock pulses. When it
counts to 3, it recycles back to 0 to begin the sequence again.

PRJ Q

K Q

CLK

HIG H

CLR

PRJ Q

K Q

HIG H

CLR

1

0

1

0

1

0

1 2 3 4 5

0 1 0 1

0 0 1 1

0 1 2 3 0

Q 0

Q 1

Q 0

Q 1

CLK

6.2 FLIP FLOP EXCITATION TABLE
The characteristic table is useful during the analysis of sequential circuits when the

value of flip-flop inputs are known and we want to find the value of the flip-flop output Q
after the rising edge of the clock signal. As with any other truth table, we can use the map
method to derive the characteristic equation for each flip-flop.

During the design process we usually know the transition from present state to the
next state and wish to find the flip-flop input conditions that will cause the required transition.
For this reason we will need a table that lists the required inputs for a given change of state.
Such a list is called the excitation table. There are four possible transitions from present
state to the next state. The required input conditions are derived from the information
available in the characteristic table. The symbol X in the table represents a “don’t care”
condition, that is, it does not matter whether the input is 1 or 0.

The different types of flip flops (RS, JK, D, T) can also be described by their excitation,
table as shown below. The left side shows the desired transition from Qn to Qn+1, the right
side gives the triggering signals of various types of FFs needed for the transitions.

Desired transition Triggering signal needed

Qn Qn+1 S R J K D T

0 0 0 x 0 x 0 0

0 1 1 0 1 x 1 1

1 0 0 1 x 1 0 1

1 1 x 0 x 0 1 0

Synchronous (Clocked) Sequential Circuits 239

6.3 FLIP-FLOP CONVERSIONS
This section shows how to convert a given type A FF to a desired type B FF using some

conversion logic.

The key here is to use the excitation table, which shows the necessary triggering signal
(S, R, J, K, D and T) for a desired flip flop state transition Qn → Qn+1.

Qn Qn+1 S R J K D T

0 0 0 x 0 x 0 0

0 1 1 0 1 x 1 1

1 0 0 1 x 1 0 1

1 1 x 0 x 0 1 0

Example 1. Convert a D-FF to a T-FF :

?T D-FF

C lock

Q ′

Q

We need to design the circuit to generate the triggering signal D as a function of T
and Q : D = f (T, Q)

Consider the excitation table :

Qn Qn+1 T D

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 1

Treating D as a function of T and current FF state Q Qn we have

D = T'Q + TQ = T⊕Q

D-FFT

Q

Q ′

Clock

Example 2. Convert a RS-FF to a D-FF :

240 Switching Theory

D
?

S

R Q ′

Q

Clock

We need to design the circuit to generate the triggering signals S and R as functions
of D and Q. Consider the excitation table :

Qn Qn+1 D S R

0 0 0 0 X

0 1 1 1 0

1 0 0 0 1

1 1 1 X 0

The desired signal S and R can be obtained as functions of T and current FF state Q
from the Karnaugh maps :

0 0

1 X

0

0

D
Q

0 1

0

0

D
Q

0 1

X

0

1

0

S = D R = D ′

S = D, R = D′

S

R

Q

Q ′

D

Clock

Example 3. Convert a RS-FF to a JK-FF.

?

J

K

S

R

Q

Q ′

Clock

Synchronous (Clocked) Sequential Circuits 241

We need to design the circuit to generate the triggering signals S and R as functions
of J, K and Q. Consider the excitation table.

Qn Qn+1 J K S R

0 0 0 x 0 x

0 1 1 x 1 0

1 0 x 1 0 1

1 1 x 0 x 0

The desired signals S and R as function J, K and current FF state Q can be obtained
from the Karnaugh maps:

0 1

1 1

0

1

K
Q J

00 01

S = Q J′

X X

0 0

11 10

X 0

X 0

0

0

K
Q J

00 01

R = Q K

0 0

1 1

11 10

S = Q'J, R = QK

J

K

S

R

Q

Q ′

Clock

6.4 ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS
The behaviour of a sequential circuit is determined from the inputs, the outputs and

the states of its flip-flops. Both the output and the next state are a function of the inputs
and the present state.

The suggested analysis procedure of a sequential circuit is set out below.

We start with the logic schematic from which we can derive excitation equations for
each flip-flop input. Then, to obtain next-state equations, we insert the excitation equations
into the characteristic equations. The output equations can be derive from the schematic,
and once we have our output and next-state equations, we can generate the next-state
and output tables as well as state diagrams. When we reach this stage, we use either
the table or the state diagram to develop a timing diagram which can be verified through
simulation.

242 Switching Theory

Log ic Schem atic

Derive excita tion equation
(Boolean Expression)

Derive next-state and outpu t
equations

G enerate next-sta te and ou tput
tables

G enerate sta te diagram

Deve lope tim ing d iagram

Example 1. Modulo-4 counter

Derive the state table and state diagram for the sequential circuit shown in Figure A.

x

CLK

FF 1

D Q

Q ′

FF 2

D Q

Q ′

Figure: A Logic schematic of a sequential circuit.

Synchronous (Clocked) Sequential Circuits 243

Solution.

Step 1 : First we derive the Boolean expressions for the inputs of each flip-flops in
the schematic, in terms of external input X and the flip-flop outputs Q1 and Q0. Since there
are two D flip-flops in this example, we derive two expressions for D1 and D0 :

D0 = x⊕Q0 = x′Q0 + xQo′
D1 = x′Q1 + xQ1′Q0 + xQ1Q0′

These Boolean expressions are called excitation equations since they represent the
inputs to the flip-flops of the sequential circuit in the next clock cycle.

Step 2 : Derive the next-state equations by converting these excitation equations into
flip-flop characteristic equations. In the case of D flip-flops, Q(next) = D. Therefore the next
state equal the excitation equations.

Q0(next) = D0 =x′Q0 + xQ0′
Q1(next) = D1 = x′Q1 + xQ1′ Q0′

Step 3 : Now convert these next-state equations into tabular form called the next-state
table.

Present State Next State

Q1Q x = 0

x = 1

0 0

0 1

0 0

0 1

0 1 1 0

1 0 1 0

1 1

1 1

1 1

0 0

Each row is corresponding to a state of the sequential circuit and each column represents
one set of input values. Since we have two flip-flops, the number of possible states is four
- that is, Q1Q0 can be equal to 00, 01, 10, or 11. These are present states as shown in the
table.

For the next state part of the table, each entry defines the value of the sequential
circuit in the next clock cycle after the rising edge of the CLK. Since this value depends on
the present state and the value of the input signals, the next state table will contain one
column for each assignment of binary values to the input signals. In this example, since
there is only one input signal, Cnt, the next-state table shown has only two columns,
corresponding to x = 0 and x = 1.

244 Switching Theory

Note that each entry in the next-state table indicates the values of the flip-flops in the
next state if their value in the present state is in the row header and the input values in
the column header.

Each of these next-state values has been computed from the next-state equations in
STEP 2.

Step 4 : The state diagram is generated directly from the next-state table, shown in
Fig. B.

00 01

1011

x = 1

x = 0

x = 1

x = 0

x = 1

x = 1

x = 0 x = 0

Fig. B : State diagram.

Each are is labelled with the values of the input signals that cause the transition from
the present state (the source of the arc) to the next state (the destination of the arc).

In general, the number of states in a next-state table or a state diagram will equal 2m
where m is the number of flip-flops. Similarly, the number of arcs will equal 2m × 2k, where
k is the number of binary input signals. Therefore, in the state diagram, there must be four
states and eight transitions. Following these transition arcs, we can see that as long as
x = 1, the sequential circuit goes through the states in the following sequence : 0, 1, 2, 3,
0, 1, 2, On the other hand, when x = 0, the circuit stays in its present state until x
changes to 1, at which the counting continues.

Since this sequence is characteristic of modulo-4 counting, we can conclude that the
sequential circuit in Figure A is a modulo-4 counter with one control signal, x, which enables
counting when X = 1 and disables it when x = 0.

Example 2. Derive the next state, the output table and the state diagram for the
sequential circuit shown in Fig. B.

Solution. The input combinational logic in Figure B is the same as in Example 1, so
the excitation and the next-state equations will be same as in Example 1.

Excitation equations :

D0 = x⊕Q0 + x′Q0 + xQ0′
D0 = x′Q1 + xQ1′Q0 + xQ1Q0′

Synchronous (Clocked) Sequential Circuits 245

x

CLK

FF 1

D Q

Q ′

FF 2

D Q

Q ′

Y

Figure B : Logic schematic of a sequential circuit.

Next-state equations :

Q0(next) = D0 = x′Q0 + xQ0′
Q1(next) = D0 = x′Q1 + xQ1′Q0 + xQ1Q0

In addition, however, we have computed the output equation.

Output equation : Y = Q1 Q0

As this equation shows, the output Y will equal to 1 when the counter is in state
Q1Q0 = 11, and it will stay 1 as long as the counter stays in that state.

Next-state and output table :

Present State Next State Output
Q1Q0 x = 0 z

00

01

00 0

01

01 10 0

10 10 0

11

11 1

11

00

246 Switching Theory

Clock cyc le 1 C lock cyc le 2 C lock cyc le 3 C lock cyc le 4

1K

X

Q1

Q0

Y

t0 t1 t2 t3 t4 t5

00
Y = 0

01
Y = 0

10
Y = 0

11
Y = 1

x = 1

x = 0

x = 1

x = 0

x = 1

x = 1

x = 0 x = 0

Fig. State diagram of sequential circuit in Figure B.

Timing diagram
Figure C. Timing diagram of sequential circuit in Figure A.

Note that the counter will reach the state Q1Q0 = 11 only in the third clock cycle, so
the output Y will equal 1 after Q0 changes to 1. Since counting is disabled in the third clock
cycle, the counter will stay in the state Q1Q0 = 11 and Y will stay asserted in all succeeding
clock cycles until counting is enabled again.

6.5 DESIGN OF CLOCKED SEQUENTIAL CIRCUITS
The design of a synchronous sequential circuit starts from a set of specifications and

culminates in a logic diagram or a list of Boolean functions from which a logic diagram can

Synchronous (Clocked) Sequential Circuits 247

be obtained. In contrast to a combinational logic, which is fully specified by a truth table,
a sequential circuit requires a state table for its specification. The first step in the design
of sequential circuits is to obtain a state table or an equivalence representation, such as a
state diagram.

The recommended steps for the design of sequential circuits are set out below.

Specify the p rob lem
(W ord descrip tion of the circu it behaviour)

Derive the sta te diagram

O btain the sta te tab le

The num ber o f sta tes m ay be reduced
by sta te reduction m ethod

Choose the type o f flip -flops to be used

Determ ine the num ber o f flip -flops
needed

Derive excita tion equations

Using the m ap or any o ther s im p lification
m ethod, derive the outpu t functions and

the flip-flop input functions

Draw the logic diagram

A synchronous sequential circuit is made up of flip-flops and combinational gates. The
design of the circuit consists of choosing the flip-flops and then finding the combinational
structure which, together with the flip-flops, produces a circuit that fulfils the required
specifications. The number of flip-flops is determined from the number of states needed in
the circuit.

248 Switching Theory

State Table
The state table representation of a sequential circuit consists of three sections labelled

present state, next state and output. The present state designates the state of flip-flops before
the occurrence of a clock pulse. The next state shows the states of flip-flops after the clock
pulse, and the output section lists the value of the output variables during the present state.

State Diagram
In addition to graphical symbols, tables or equations, flip-flops can also be represented

graphically by a state diagram. In this diagram, a state is represented by a circle, and the
transition between states is indicated by directed lines (or arcs) connecting the circles.

State Diagrams of Various Flip-Flops
Table below shows the state diagrams of the four types of flip-flops.

Q = 0 Q = 1

S, R = 0, 0 S, R = 0, 0
S, R = 1, 0

S, R = 0, 1

SR

Name State D iatram

Q = 0 Q = 1

J, K = 0 , 0 J, K = 0 , 0JK
J, K = 1 , 0 o r 1 , 1

J, K = 0 , 1 o r 1 , 1

Q = 0 Q = 1

D = 1 D = 1
D = 1

D = 0

D

Q = 0 Q = 1

T = 0 T = 0
T = 1

T = 1

T

One can see from the table that all four flip-flops have the same number of states and
transitions. Each flip-flop is in the set state when Q = 1 and in the reset state when

Synchronous (Clocked) Sequential Circuits 249

Q = 0. Also, each flip-flop can move from one state to another, or it can re-enter the same
state. The only difference between the four types lies in the values of input signals that
cause these transitions.

A state diagram is a very convenient way to visualize the operation of a flip-flop or even
of large sequential components.

State Reduction
Any design process must consider the problem of minimizing the cost of the final

circuit. The two most obvious cost reductions are reductions in the number of flip-flops and
the number of gates.

The number of states in a sequential circuit is closely related to the complexity of the
resulting circuit. It is therefore desirable to know when two or more states are equivalent
in all aspects. The process of eliminating the equivalent or redundant states from a state
table/diagram is known as state reduction.

Example. Let us consider the state table of a sequential circuit shown in Table A.

Table A. State table

Present State Next State Output

x = 0 x = 0

x = 1 x = 1

B 1

A C 0

F 0

B D 1

E

C F 1

F 0

D E 1

A 0

E D 0

B 1

F C 0

It can be seen from the table that the present state A and F both have the same
next states, B (when x = 0) and C (when x = 1). They also produce the same output 1
(when x = 0) and 0 (when x = 1). Therefore states A and F are equivalent. Thus one of
the states, A or F can be removed from the state table. For example, if we remove row
F from the table and replace all F’s by A’s in the columns, the state table is modified
as shown in Table B.

250 Switching Theory

Table B. State F removed

Present Next State Output

State x = 0 x = 0

x = 1 x = 1

A B 1

C 0

B A 0

D 0

C D 1

E 1

D A 0

E 1

E A 0

D 0

It is apparent that states B and E are equivalent. Removing E and replacing E’s by B’s
results in the reduce table shown in Table C.

Table C. Reduced state table

Present Next State Output

State x = 0 x = 0

x = 1 x = 1

A B 1
C 0

B A 0
D 0

C D 1
B 1

D A 0
B 1

The removal of equivalent states has reduced the number of states in the circuit from
six to four. Two states are considered to be equivalent if and only if for every input sequence
the circuit produces the same output sequence irrespective of which one of the two states
is the starting state.

6.6 FINITE STATE MACHINE (FSM)
Definition: A typical sequential system composed of

• Inputs from outside world;

Synchronous (Clocked) Sequential Circuits 251

• Internal state of the system stored in the memory elements;

• Outputs to outside world;

• Next state decoder;

• Output decoder.

Both the next state and the output are functions of the input and the current state :

Next State = G(Input, Current State)

Output = F(Input, Current State)

Such a system is also called a Mealy Machine, or Class A machine. Finite state machine
has different variations.

A General Modal of FSM—Mealy (Class A) Machine

O utpu t
function F

O utpu t = F (Inpu t, Current s tate)

Curren t s ta te

Next s tate = G (Input, Curren t s ta te)

State Registers

Next s tate
function G

Inpu t

Finite state machine can be designed to control processes of digital nature (discrete in
time, binary in variable values) which can be described by Boolean algebra. This is comparable
with but different from the PID controllers which are used to control processes of analog
nature (continuous in both time and variable values) described by differential equations.

Finite State Machine (FSM) Used as a Controller
With the help of following steps one can design an FSM for solving a given problem :

1. Understand the problem and determine the number of states needed. If there are
N states, then at least log2N flip-flop’s are needed to represent these states. This
is the most important step!

252 Switching Theory

System under
con tro l

Controller
(FS M)

Control inpu t

Control oupu t
System
output
(feed back)

Moore (Class B) Machine

O utpu t =
F(C urrent s tate)

O utpu t
function F

Curren t s ta te

State registers

Next state =
G (Inpu t, Curren t s ta te)

Next state
function G

Inpu t

Class C Machine

State registers

Next state
function G

Next state =
G (Inpu t, Curren t s ta te)

Inpu t

O utpu t =
F(C urrent s tate)

Class D Machine

State registers

Next state
function G

Next state = G (Inpu t)

O utpu t = Curren t sta te

Inpu t

Next state = G (Inpu t)

O utpu t = Curren t sta te

Class E Machine

State Registers

Synchronous (Clocked) Sequential Circuits 253

2. Draw the state diagram. At each state, find out where to go as the next state and
what output to generate each combination of inputs.

3. Make the state table based on the state diagram. The current state (represented
by the Q(t)’s of the FFs) and inputs are listed on the left as arguments, while the
corresponding next state (represented by Q(t+1)’s of the FFs) and outputs are listed
on the right as the functions.

4. Design the next state decoder and the output decoder using the state table
as the truth table. If D-FFs are used, then Q(t+1) of the ith FF can be used
directly as the signal Di to set the FF. However, when other types of FFs are
to be used, the excitation table is helpful to figure out the signals (S, R, J, K,
or T) needed to realize the desired state transition : Q(t) → Q(t+1) for each of
the FFs.

5. Simplify the functions by K-map, and implement the next state and output
decoders at logic gate level.

Previous
State A

Inpu t/F (Inpu t, A)

Previous
State B

Next S ta te C Next S ta te D

B = G (Input, A)

Inpu t 1 /F (Inpu t 1 , B) Inpu t 2 /F (Inpu t 2 , B)

C = G (Inpu t 1, B) D = G (Inpu t 2, B)

Next S ta te = G (Inpu t, P resen t S ta te)
O utpu t = F(Input, Presen t S tate)

Note: Many of the problems of interest to us only require More or class B machine (the
outputs are functions of the state only) or class C machine (the outputs are the same as the
state). In these cases, the outputs can be generated as functions of the new state after the
transition is completed.

Example 1. A serial adder receives two operands A = an–1,, ai, ... a0 B = bn–1,..., bn
... bn as two sequences of bits (i = 0, 1, ..., n – 1) and adds them one bit at a time to
generate the sequence of bits Si of the sum as the output. Implement this serial adder as
a finite state machine.

* Inputs : ai and bi

* Output : Si

* Two states : carry S = 1, or no carry S = 0

254 Switching Theory

* State diagram:

10/1

0
No carry

1
Carry

00/0

01/1
00/1

11 /0

01/0

10/0

11 /1

* State table:

Present Inputs Next Output

State S ai bi State S’ Si

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

0 1

1 1

0

1

S
ab

00 01

S = ab + aS + bS′

1 0

1 1

11 10

0 1

1 0

0

1

S
ab

00 01

S = a b S⊕′ ⊕

0 1

1 0

11 10

• Next state decoder: S′ = G(ai, bi, S) = aibi + aiS + biS

• Output decoder: Si = F(ai, bi, S) = ai ⊕ bi ⊕ S

The FSM implementation of the serial adder contains three pieces of hardware: (i) a
D-FF for keeping the state (whether or not there is a carry from the ith bit to the (i+1)th
bit), (ii) the next state decoder S = aibi + ai S + bi S that sets the D-FF, and (iii) the output
decoder that generates the sum bit si = ai ⊕ bi ⊕ S. Note that a MS-FF is used for the output
so that the output is a function of the current state and input, and it will stay unchanged
after the state transition (from current to next state).

Example 2. Design the FSM controller for the traffic lights at an intersection (North/
South (NS) vs. East/West (EW) with green and red lights only. The rule : (a) if no car
detected, stay the same state, (b) if cars are detected in the direction with red light (independent
of whether cars are detected in the direction with green light), switch state.

Synchronous (Clocked) Sequential Circuits 255

a

b

D
S

D
S

Clock

Next S ta te
Decoder

O utpu t
Decoder

• States :
• S = 0: NS green (EW red);
• S = 1: EW green (NS red).
• Inputs :
• NS = 1/0: NS car detected/not detected
• EW = 11/0: EW car detected/not detected
• output: same as states (a class C FSM).

The state diagram :

S = 0
NS green

NS = 1
EW = X

EW = 1
NS = X

EW = X
NS = 0

EW = 0
NS = X

S = 1
EW green

The state table:

Present Inputs’ Next Signals to trigger the FF

State (PS) NS EW State D S R J K T

0 x 0 0 0 0 x 0 0 0

0 x 1 1 1 1 0 1 x 1

1 0 x 1 1 x 0 x 0 0

1 1 x 0 0 0 1 x 1 1

The next state decoder can be implemented in any of the four types of flip flops. Given
the desired state transition (from present state to next state), the signals needed to trigger
the chosen FF can be obtained by the excitation table (also shown in the state table), to be
generated by the next state decoder. Note that if D-FF is used, the triggering signal is the
same as the desired next state.

• D-FF : D = PS .EW + PS.NS
• RS-FF : S = PS .EW, R = PS.NS

256 Switching Theory

• JK-FF : J = EW, K = NS

• T-FF : T = PS .EW + PS.NS

EW

NS

S EW green

NS green

NS

EW

T
EW green

NS green

R

EW

NS

EW green

NS green

J

K

6.7 SOLVED EXAMPLES
Example 1. For the state diagram shown in Fig. 6. Write state table & reduced state table.

a

c

g

f

d

e

b

0/1

0/0

0/1

1 /0

0/0

1 /0

0/1

1/1

1 /0

0 /0

1 /1

1/0
0/0

1 /1

Solution. From the state diagram, a state table is prepared as shown in table 6.

Present State Next state Output

x = 0 x = 1 x = 0 x = 1

a c b 0 0

b d c 0 0

c g d 1 1

d e f 1 0

e f a 0 1

f g f 1 0

g f a 0 1

Synchronous (Clocked) Sequential Circuits 257

It has been shown from the table 6 that the present state e and g both have the
same next states f (when x = 0) and a (when x = 1). They also produce the same output
0 (when x = 0) and 1 (when x = 1). Therefore states e and g are equivalent. Thus one
of the states, e or g can be removed from the state table. For example, if we remove
raw g from the table and replace all g’s by e’s in the columns, the state table is modified
as shown in table 6.

Table 6. Staste g removed

Present State Next state Output

x = 0 x = 1 x = 0 x = 1

a c b 0 0

b d c 0 0

c e d 1 1

d e f 1 0

e f a 0 1

 f e f 1 0

Similarly state d and f are also equivalent, therefore one of them say I, can be eliminated.
After replacing all f’s by d’s in the columns, the reduced state table is given in table 6.

Table 6. Reduced state table

Present State Next state Output

x = 0 x = 1 x = 0 x = 1

a c b 0 0

b d c 0 0

c e d 1 1

d e f 1 0

e d a 0 1

Example 2. A sequential circuit has two flip-flops say A and B, two inputs say X and
Y, and an output say Z. The flip-flop input functions and the circuit output function are as
follows :

JA = xB + y′B′
JB = xA′

Z = xy A + x′y′B
KA = xy′B′
KB = xy′ + A

Obtain state table, state diagram and state equations.

Solution.

State table for the problem is shown in table 6.1.

258 Switching Theory

Present state Next state Output z

A B xy = 00 xy = 01 xy = 10 xy = 11 xy = 00 xy = 01 xy = 10 xy = 11

A B A B A B A B

0 0 1 0 0 0 1 1 0 1 0 0 0 0

0 1 0 1 0 1 1 0 1 1 1 0 0 0

1 0 1 0 1 0 0 0 1 0 0 0 0 1

1 1 1 0 1 0 1 0 1 0 1 0 0 1

Fig. 6 State table

With the help of state table we can draw the state diagram as shown in figure 6.

00

10

00/0 10/0

00/0
01/0
11 /1

01

11

11/0

10/0

11 /0

00/1
01/0
10/0
11 /1

01/0

00/1
01/0

Fig. 6. State diagram

The state equation will be

A (t+1) = xB + Y' + Y A + x'A

B (t+1) = x A'B' + x'AB + Y A'B

Example 3. A clocked sequential circuit has three states, A, B and C and one input X.
As long as the input X is O, the circuit alternates between the states A and B. If the input
X becomes 1 (either in state A or in state B), the circuit goes to state C and remains in the
state C as long as X continues to be 1. The circuit returns to state A if the input becomes
0 once again and from then one repeats its behaviour. Assume that the state assignments are
A = 00, B = 01 and C = 10.

(a) Draw the state diagram.

(b) Give the state table for the circuit.

Solution. (a) First draw circles for 3 states A, B, C and
write state assignments.

The directed line indicate the transition and input on
the directed line are those causes the change on the line. The
figure 6. Shows the state diagram.

00

A

10

C

01 B

0
1

11

Fig. 6

Synchronous (Clocked) Sequential Circuits 259

(b) From the state diagram, a state table is drawn as shown in table 6.

Table 6. State table

Present State Next state Output

x = 0 x = 1 x = 0 x = 1

A B C 0 1

B A C 0 1

C A C 0 1

Given the state assignments A = 00, B = 01, C = 10.

Example 4. A new clocked x-Y flip-flop is defined with two inputs X and Y in addition
to the clock input. The flip-flop functions as follows :

If XY = 00, the flip-flop changes state with each clock pulse.

If XY = 01, the flip flop state Q becomes 1 with the next clock pulse.

If XY = 10, the flip flop state Q become 0 with the next clock pulse.

If XY = 11, no change of state occurs with the clock pulse.

(a) Write the truth table for the X-Y flip-flop.

(b) Write the Excitation table for the X-Y flip flop.

(c) Draw a circuit 40 implement the X-Y flip-flop using a J-K flip-flop.

Solution. (a) Truth table for the clocked X-Y flip flop is shown in table 6.

Inputs Next state

X Y Qn+1

0 0 Qn

0 1 1

1 0 0

1 1 Qn

(b) The Excitation table for the X-Y flip flop is shown in table 6.

Qn Qn+1 X Y

0 0 1 x

0 1 0 x

1 0 x 0

1 1 x 1

 x = distance

(c) On comparing Excitation table of X-Y flip-flop with JK flip-flop

X = J : Y = K
Therefore the X-Y flip flop can be implemented using J-K flip-flop as shown in figure 6.

260 Switching Theory

CLK

X

Y

J

K

Q n

Q n

Example 5. For the digital circuit shown in the figure 6. Explain what happens at the
nodes N1, N2, F and F , when

(I) CK =1 and ‘A’ changes from ‘0’ to ‘1’.

(II) A = 1 and ‘CK’ changes from ‘1’ to ‘0’.

(III) CK = 0 and ‘A’ changes from ‘1’ to ‘0’.

(IV) Initially, CK = 0 and ‘A’ changes from 0 to 1, and then CK goes to 1.

(V) What is the circuit performing.

C K

G 4

G 3 N 1
F

F

G 2

N 2
G 1

A

Solution.

(I) N1(n) N2(n) CK A G1 G2 G3 G4 N2(n+1) N1(n+1)

0 0 1 1 0 0 0 1 0 0

1 0 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 1 0 0

1 1 1 1 0 0 0 0 0 0

Initially if N1, N2 are 0, it remains at 0. If at 1, they go to 0.

As N1, N2 are at 0, in initially, if F is 1, F is 0. or initially if F = 0, F is 1.

That is F, F do not change their initial states.

(II) N1(n) N2(n) CK A G1 G2 N2(n+1) G3 G4 N1(n+1)

0 0 0 1 0 1 1 0 1 0

1 0 0 1 0 1 1 1 0 1

0 1 0 1 0 1 1 0 1 0

1 1 0 1 0 1 1 1 0 1

N2 continues to be 1 whatever be its initial state. N1 remains at 0 if initially 0, and
1 if initially 1.

If F = 0, F = 0

Synchronous (Clocked) Sequential Circuits 261

If N1 = 0, F will become 1 and F = 0

If N1 = 1, F will be 0 and F also 0, which is prohibited state.

(III) N1(n) N2(n) CK A G1 G2 N2(n+1) G3 G4 N1(n+1)

0 0 0 0 1 0 0 1 0 1

1 0 0 0 1 0 0 1 0 1

0 1 0 0 0 1 1 0 1 0

1 1 0 0 0 1 1 1 0 1

N2 = 0, F = 1, F = 0, N1 = 0, F = 1, N1 = 1, F = 0, F = 1

N2 = 1, F = 1, F = 0, N1 = 0, F = 1, N1 = 1, F = 0, F = 1

(IV) The change of state is similar to (II), CK = 0, A = 1 initially and finally as at (I),
CK = 1, A = 1.

(V) The circuit is functioning as a SR latch.

Example 6. The full adder given in figure 6 receives two external inputs x & y; the
third input Z comes from the output of a D flip-flop. The carry output is transferred to the
flip-flop, every clock pulse. The external S output gives the sum of x, y and z. Obtain the state
table and state diagram of the sequential circuit.

Solution.

Fu ll Adder

S

C

x

y

z Q
D

CP

The state table for the given circuit is shown in figure 6.

Present state Inputs Next state Output

z x y z S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Fig. 6. State table

262 Switching Theory

The state diagram corresponding to state-table of figure 6.

0 1
00/0
01/1

10/1

01/0
10/0
11 /1

11 /0

00/1

Fig. 6. State diagram

6.8 EXERCISES
1. An R-S latch can be based on cross-coupled NOR gates. It is also possible to contruct an

R’-S’ latch using cross-coupled NAND gates.

(a) Draw the R’-S’ latch, labelling the R’ and S’ inputs and the Q and Q’ outputs.

(b) Show the timing behaviour across the four configurations of R’ and S’. Indicate on your
timing diagram the behaviour in entering and leaving the forbidden state when R’=S’=0.

(c) Draw the state diagram that shows the complete input/output and state transition
behaviour of the R’-S’ latch.

(d) What is the characteristic equation of the R’-S’ latch.

(e) Draw a simple schematic for a gated R-S latch with an extra enable input, using
NAND gates only.

2. Consider a D-type storage element implemented in five different ways :

(a) D-latch (i.e., D wired to the S-input and D’ wired to the R-input of an R-S latch);

(b) Clock Enabled D-latch;

(c) Master-Slave Clock Enabled D-Flip-flop;

(d) Positive Edge-triggered Flip-flop;

(e) Negative Edge-triggered Flip-flop,

Complete the following timing charts indicating the behaviour of these alternative storage
elements. Ignore set-up and hold time limitations (assume all constraints are meant):

CLK

D

D-latch

C locked D -la tch

DM /S Flip-Flop

Positive edge FF

Negative edge F F

3. Complete the timing diagram for this circuit.

Synchronous (Clocked) Sequential Circuits 263

T D

CLK

Q Q

T

CLK

Q

4. Design a circuit that implements the state diagram

1/1 S0 S1

S2
1/1

1 /0

0 /0

0 /1

0 /1

5. Design a circuit that implements the state diagram

S0

0/0

1 /0

S4

0/0

1 /1

S3

S2

S1

0/1 0 /1

1 /1

0 /1
1 /0

1 /0

6. A sequential network has one input X and two outputs S and V. X represent a four bit binary
number N, which is input least significant bit first. S represents a four bit binary number
equal to N + 2, which is output least significant bit first. At the time the fourth input is
sampled, V = 1, in N + 2 is too large to be represented by four bits; otherwise V = 0.

Derive a Mealy state graph and table with a minimum number of states.

7. A sequential network has one input X and two outputs S and V. X represent a four bit binary
number N, which is input least significant bit first. S represents a four bit binary number

264 Switching Theory

equal to N – 2, which is output least significant bit first. At the time the fourth input is
sampled, V = 1, in N – 2 is too small to be represented by four bits; otherwise V = 0.

Derive a Mealy state graph and table with a minimum number of states

8. Design a synchronous circuit using negative edge-trigered D flip-flops that provides an
output signal Z which has one-fifth the frequency of the clock signal. Draw a timing diagram
to indicate the exact relationship between the clock signal and the output signal Z. To
ensure illegal state recovery, force all unused or illegal states to go to 0.

9. Consider the design of a sequence detector finite state machine that will assert a 1 when
the current input equals the just previously seen input.

(a) Draw as simple state diagrams for a MEALY MACHINE and a MOORE MACHINE
implementation as you can (minimization is not necessary). The MEALY MACHINE
should have fewer states. Briefly explain why.

(b) If the Mealy Machine is implemented as a SYNCHRONOUS MEALY MACHINE, draw
the timing diagram for the example input/output sequence described above.

(c) If the timing behaviours are different for the MOORE, MEALY, and SYNCHRONOUS
MEALY machines, explain the reason why.

10. A sequential circuit is specified by the following flip-flop input functions. Draw the logic
diagram of the circuit.

JA = Bx’ KA = Bx

JB = x KB = A⊕x

11. Design the circuit and draw the logic diagram of the sequential circuit specified by the
following state diagram. Use an RS flip-flop.

0

00

01

10

XY = 0

01

10

11

XY =

XY = 11

XY = 00

12. Complete the truth table for the latch constructed from 2 NOR gates.

S R Q Q’

1 0

0 0 (after S = 1, R = 0)

0 1

0 0 (after S = 0, R = 1)

1 1
1

0

1

0

R(Reset)

S(S et)

Q

Q

13. Construct a logic diagram of a clocked D flip-flop using AND and NOR gates.

14. Explain the master-slave flip-flop constructed from two R-S flip-flop.

15. Draw the logic diagram of a master-slave D flip-flop using NAND gates.

7
CHAPTER

7.0 INTRODUCTION
Registers are the group of flip-flops (single bit storage element). The simplest type of

register is a data register, which is used for the temporary storage of data. In its simplest
form, it consists of a set of N D flip-flops, all sharing a common clock. All of the digits in the
N bit data word are connected to the data register by an N line “data bus”. Fig. 7.0 shows
a four bit data register, implemented with four D flip flops.

D

Q

Q

I0 O 0

D

Q

Q

I1 O 1

D

Q

Q

I2 O 2

D

Q

Q

I3 O 3

C lock

Fig. 7.0 4-bit D register

The data register is said to be a synchronous device, because all the flip flops change
state at the same time.

7.1 SHIFT REGISTERS
A common form of register used in many types of logic circuits is a shift register.

Registers like counters, are sequential circuits and as they employ flip flops they possess
memory; but memory is not the only requirement of a shift register. The function of storage
of binary data can be very well performed by a simple register. Shift registers are required
to do much more than that. They are required to store binary data momentarily until it is
utilized for instance, by a computer, microprocessor, etc. Sometimes data is required to be
presented to a device in a manner which may be different from the way in which it is fed
to a shift register. For instance, shift register can present data to a device in a serial or
parallel form, irrespective of the manner in which it is fed to a shift register. Data can also
be manipulated within the shift register, so that it is presented to a device in the required
form. These devices can also shift left or right and it is this capability which gives them the
name of shift register. Fig. 7.1 show the many ways in which data can be fed into a shift
register and presented by it to a device.

Shift registers have found considerable application in arithmatic operations. Since moving
a binary number one bit to the left is equivalent to multiplying the number by 2 and moving
the number one bit position to the right amounts to dividing the number by 2. Thus,
multiplications and divisions can be accomplished by shifting data bits. Shift registers find
considerable application in generating a sequence of control pulses.

265

SHIFT REGISTERS AND COUNTERS

266 Switching Theory

Seria l
Inpu t
1010

Serail
O utpu t
1010

Seria l
Inpu t
1001

(a) Seria l inpu t/Seria l output

Paralle l O utput
1 0 0 1

(b) Seria l inpu t/Para lle l ou tpu t

Serail
O utpu t
1001

(c) Para lle l inpu t/Seria l ou tput

Paralle l O utput
1 1 0 1

(b) Paralle l inpu t/Para llel ou tpu t

1 0 0 1
Paralle l inpu t

1 1 0 1
Paralle l inpu t

Fig. 7.1 Data conversion with a shift register

Shift register is simply a set of flip flops (usually D latches or RS flip flops) connected
together so that the output of one becomes the input of the next, and so on in series. It is
called a shift register because the data is shifted through the register by one bit position on
each clock pulse. Fig. 7.2 shows a four bit shift register, implemented with D flip flops.

D

Q

Q D

Q

Q D

Q

Q D

Q

Qin out

C lock

Fig. 7.2 4-bit serial-in serial-out shift register

On the leading edge of the first clock pulse, the signal on the DATA input is latched in
the first flip flop. On the leading edge of the next clock pulse, the contents of the first flip-
flop is stored in the second flip-flop, and the signal which is present at the DATA input is
stored is the first flip-flop, etc. Because the data is entered one bit at a time, this called a
serial-in shift register. Since there is only one output, and data leaves the shift register one
bit at a time, then it is also a serial out shift register. (Shift registers are named by their
method of input and output; either serial or parallel.) Parallel input can be provided through
the use of the preset and clear inputs to the flip-flop. The parallel loading of the flip flop can
be synchronous (i.e., occurs with the clock pulse) or asynchronous (independent of the clock
pulse) depending on the design of the shift register. Parallel output can be obtained from the
outputs of each flip flop as shown in Fig. 7.3.

D

Q

Q D

Q

Q D

Q

Q D

Q

Qin

C lock

O 0 O 1 O 2 O 3

Fig. 7.3 4-bit serial-in parallel-out shift register

Shift Registers and Counters 267

Communication between a computer and a peripheral device is usually done serially,
while computation in the computer itself is usually performed with parallel logic circuitry. A
shift register can be used to convert information from serial form to parallel form, and vice
versa. Many different kinds of shift registers are available, depending upon the degree of
sophistication required.

Here we deal with the basic characteristics of shift registers and their applications.
Normally shift registers are obtained through D-Flip-Flops. However if required other flip
flops may also be used. D-Flip-Flops are used because of simplicity that data presented at
input is available at the output. Throughout the chapter it is our strategy to discuss all the
shift registers using D-flip-flops only. If one need to use some other Flip-Flop, say JK Flip-
Flip, then we recommend following procedure–

1. Design the shift register using D-flip flops only.

2. Take JK Flip-Flip and convert it into D Flip-Flop.

3. Replace each of the D-Flip-Flop of step1 by the flip-flop obtained in step 1 after
conversion.

To elaborate this let us consider the shift register shown in Fig. 7.2.

Step 1: It is readily obtained in Fig. 7.2.

Step 2: Convert JK into D-Flip-Flop. It is shown below in Fig. 7.4

J

Q

Q

Clock

D

K

Fig. 7.4 JK Flip-flop converted into D-Flip-Flop

Step 3: Replace each D-Flip-Flop of Fig. 7.2 by the one shown in Fig. 7.4.

J

Q

Q

Clock

In

K

J

Q

Q

K

J

Q

Q

K

J

Q

Q

K

O ut

Fig. 7.5 (a) 4-bit serial in serial out shift register using JK Flip-Flop

J

Q

Q

Clock

In

K

J

Q

Q

K

J

Q

Q

K

J

Q

Q

K

O utD

FF 0 FF 1 FF 2 FF 3

Fig. 7.5 (b) 4-bit serial in–serial out shift register using JK Flip-flop

268 Switching Theory

OPERATION
A 4-bit shift register constructed with D type flip-flop (Fig. 7.2) and JK flip-flop (Fig. 7.5).

By addition or deletion of flip-flop more or fewer bits can be accommodated. Except for FF0,
the logic level at a data input terminal is determined by the state of the preceding flip-flop.
Thus, Dn is 0 if the preceding flip-flop is in the reset state with Qn–1 = 0, and Dn = 1 if
Qn–1 = 1. The input at FF0 is determined by an external source.

From the characteristic of D-flip-flop we know that immediately after the triggering
transition of the clock, the output Q of flip-flop goes to the state present at its input D just
before this clock transition. Therefore, at each clock transition, pattern of bits, 1s and 0s, is
shifted one flip-flop to the right. The bit of the last flip-flop (FF3 in Fig. 7.6) is lost, while the
first flip-flop (FF0) goes to the state determined by its input D0. This operation is shown in
Fig. 7.6. We have assumed that the flip-flop triggers on the positive-going transition of the
clock waveform, and initially we have D0 = 0, FF0 = 1 and FF2 = FF3 = FF4 = 0.

1

0

1

0

1

0

1

0

1

0

C lock
Pu lses

1 2 3 4 5

FF 0
1

FF 1
0

FF 2
0

FF 3
0

FF 0
0

FF 1
1

FF 2
0

FF 3
0

FF 0
0

FF 1
0

FF 2
1

FF 3
0

FF 0
0

FF 1
0

FF 2
0

FF 3
1

Fig. 7.6 A 4-bit shift register operation

7.2 MODES OF OPERATION
This section describes, the basic modes of operation of shift registers such as Serial In-

Serial Out, Serial In-Parallel Out, Parallel In-Serial Out, Parallel In-Parallel Out, and bi-
directional shift registers.

7.2.1 Serial In–Serial Out Shift Registers
A basic four-bit shift register can be constructed using four D-flip-flops, as shown in

Fig. 7.7. The operation of the circuit is as follows. The register is first cleared, forcing all four
outputs to zero. The input data is then applied sequentially to the D input of the first flip-
flop on the left (FF0). During each clock pulse, one bit is transmitted from left to right.
Assume a data word to be 1001. The least significant bit of the data has to be shifted through
the register from FF0 to FF3.

Shift Registers and Counters 269

D

Q

Q D

Q

Q D

Q

Q D

Q

Q
Data ou tput

CLK

Data inpu t S ET S ET S ET S ET

C L R C L R C L R C L R

CLEAR

CLEAR

FF 0 FF 1 FF 2 FF 3

0 0 0 0

FF 0 FF 1 FF 2 FF 3

Fig. 7.7

In order to get the data out of the register, they must be shifted out serially. This can
be done destructively or non-destructively. For destructive readout, the original data is lost
and at the end of the read cycle, all flip-flops are reset to zero.

To avoid the loss of data, an arrangement for a non-destructive reading can be done by
adding two AND gates, an OR gate and an inverter to the system. The construction of this
circuit is shown in Fig. 7.8.

FF 0 FF 1 FF 2 FF 3

CLK

Input da ta

R /W con tro l

O utpu t data

Fig. 7.8

The data is loaded to the register when the control line is HIGH (i.e. WRITE). The

data can be shifted out of the register when the control line is LOW (i.e. READ).

7.2.2 Serial In-Parallel Out Shift Registers
For this kind of register, data bits are entered serially in the same manner as discussed

in the last section. The difference is the way in which the data bits are taken out of the
register. Once the data are stored, each bit appears on its respective output line, and all bits
are available simultaneously. A construction of a four-bit serial in-parallel out register is
shown in Fig. 7.9.

D

Q

Q D

Q

Q D

Q

Q

CLK

Input da ta S ET S ET S ETD

Q

QS ET

C L R C L R C L R C L R

CLEAR

FF 0 FF 1 FF 2 FF 3

Q 0 Q1 Q 2 Q 3

Fig. 7.9

270 Switching Theory

7.2.3 Parallel In-Serial Out Shift Registers
A four-bit parallel in-serial out shift register is shown in Fig. 4.10. The circuit uses

D-flip-flops and NAND gates for entering data (i.e., writing) to the register.

D0, D1, D2 and D3 are the parallel inputs, where D0 is the most significant bit and D3
is the least significant bit. To write data in, the mode control line is taken to LOW and the
data is clocked in. The data can be shifted when the mode control line is HIGH as SHIFT
is active high. The register performs right shift operation on the application of a clock pulse.

Fig. 7.10

7.2.4 Parallel In-Parallel Out Shift Registers
For parallel in-parallel out shift registers, all data bits appear on the parallel outputs

immediately following the simultaneous entry of the data bits. The following circuit is a four-
bit parallel in-parallel out shift register constructed by D-flip-flops.

D

Q

Q D

Q

Q D

Q

Q

CLEAR

S ET S ET S ETD

Q

QS ET

C L R C L R C L R C L R

Q 0 Q1 Q 2 Q 3
CLK

D 0 D 1 D 2 D 3

Fig. 7.11

The D’s are the parallel inputs and the Q’s are the parallel outputs. Once the register
is clocked, all the data at the D inputs appear at the corresponding Q outputs simultaneously.

7.2.5 Bidirectional Shift Registers (Universal Shift Register)
The registers discussed so far involved only right shift operations. Each right shift

operation has the effect of successively dividing the binary number by two. If the operation
is reversed (left shift), this has the effect of multiplying the number by two. With suitable
gating arrangement a serial shift register can perform both operations.

Shift Registers and Counters 271

A bi-directional, or reversible shift register is one in which the data can be shift
either left or right. A four-bit bi-directional shift register using D-flip-flops is shown in
Fig. 7.12.

Here a set of NAND gates are configured as OR gates to select data inputs from the right
or left adjacent bistables, as selected by the LEFT /RIGHT control line.

D

Q

QSE T

C LR

D

Q

QSE T

C LR

D

Q

QSE T

C LR

D

Q

QSE T

C LR

O utput

CLE A R

CLK

M SB

LE FT/RIG HT

Input da ta

Fig. 4.12

7.3 APPLICATIONS OF SHIFT REGISTERS
Shift registers can be found in many applications. Here is a list of a few.

7.3.1 To Produce Time Delay
The serial in-serial out shift register can be used as a time delay device. The amount

of delay can be controlled by:

• the number of stages in the register (N)

• the clock frequency (f)

The time delay ∆T is given by

∆T = N* f

7.3.2 To Simplify Combinational Logic
The ring counter technique can be effectively utilized to implement synchronous sequential

circuits. A major problem in the realization of sequential circuits is the assignment of binary
codes to the internal states of the circuit in order to reduce the complexity of circuits
required. By assigning one flip-flop to one internal state, it is possible to simplify the
combinational logic required to realize the complete sequential circuit. When the circuit is in
a particular state, the flip-flop corresponding to that state is set to HIGH and all other flip-
flops remain LOW.

272 Switching Theory

7.3.3 To Convert Serial Data to Parallel Data
A computer or microprocessor-based system commonly requires incoming data to be in

parallel format. But frequently, these systems must communicate with external devices that
send or receive serial data. So, serial-to-parallel conversion is required. As shown in the
previous sections, a serial in-parallel out register can achieve this.

7.4 COUNTERS

7.4.1 Introduction
Both counters and registers belong to the class of sequential circuits. Here we will

mainly deal with counters and also consider design procedures for sequential logic circuits.
As the important characteristic of these circuits is memory, flip-flops naturally constitute the
main circuit element of these devices and, therefore, there will be considerable emphasis on
their application in circuit design.

You must already be familiar with some sequential devices, in which operations are
performed in a certain sequence. For instance, when you dial a phone number, you dial it in
a certain sequence, if not, you cannot get the number you want. Similarly, all arithmetic
operations have to be performed in the required sequence.

While dealing with flip-flops, you have dealt with both clocked and unclocked flip-flops.
Thus, there are two types of sequential circuits, clocked which are called synchronous, and
unclocked which are called asynchronous.

In asynchronous devices, a change occurs only after the completion of the previous
event. A digital telephone is an example of an asynchronous device.

If you are dialing a number, say 6354, you will first punch 6 followed by 3, 5 and 4. The
important point to note is that, each successive event occurs after the previous event has
been completed.

Sequential logic circuits find application in a variety of binary counters and storage devices
and they are made up of flip-flops. A binary counter can count the number of pulses applied at
its input. On the application of clock pulses, the flip-flops incorporated in the counter undergo
a change of state in such a manner that the binary number stored in the flip-flops of the counter
represents the number of clock pulses applied at the input. By looking at the counter output,
you can determine the number of clock pulses applied at the counter input.

Digital circuits use several types of counters which can count in the pure binary form
and in the standard BCD code as well as in some special codes. Counters can count up as well
as count down. In this section we will be looking at some of the counters in common use in
digital devices.

Another area of concern to us will be the design of sequential circuits. We will be
considering both synchronous and asynchronous sequential circuits.

7.4.2 Binary Ripple Up-Counter
We will now consider a 3-bit binary up-counter, which belongs to the class asynchronous

counter circuits and is commonly known as a ripple counter. Fig. 7.13 shows a 3-bit counter,
which has been implemented with three T-type (toggle) flip-flops. The number of states of which
this counter is capable is 23 or 8. This counter is also referred to as a modulo 8 (or divide by
8) counter. Since a flip-flop has two states, a counter having n flip-flops will have 2n states.

Shift Registers and Counters 273

When clock pulses are applied to a ripple counter, the counter progresses from state to
state and the final output of the flip-flop in the counter indicates the pulse count. The circuit
recylces back to the starting state and starts counting all over again.

Fig. 7.13 3-Bit binary up-counter

There are two types of ripple counters, (a) asynchronous counters and (b) synchronous
counters. In asynchronous counters all flip-flops are not clocked at the same time, while in
synchronous counters all flip-flops are clocked simultaneously.

You will notice from the diagram that the normal output, Q, of each flip-flop is connected
to the clock input of the next flip-flop. The T inputs of all the flip-flops, which are T-type, are
held high to enable the flip-flops to toggle (change their logic state) at every transition of the
input pulse from 1 to 0. The circuit is so arranged that flip-flop B receives its clock pulse from
the QA output of flip-flop A and, as a consequence, the output of flip-flop B will change its logic
state when output QA of flip-flop A changes from binary 1 to 0. This applies to all the other
flip-flops in the circuit. It is thus an asynchronous counter, as all the flip-flops do not change
their logic state at the same time.

Let us assume that all the flip-flops have been reset, so that the output of the counter
at the start of the count is 0 0 0 as shown in the first row of Table 7.1. Also refer to Fig.
7.14 which shows the output changes for all the flip-flops at every transition of the input pulse
from 1 → 0.

Fig. 7.14 Waveform for 3-bit binary ripple up-counter

When the trailing edge of the first pulse arrives, flip-flop A sets and QA becomes 1, which
does not affect the output of flip-flop B. The counter output now is as shown in row 2 of the
table. As a result of the second clock pulse, flip-flop A resets and its output QA changes from
1 to 0, which sets flip-flop B and the counter output now is as shown in row 3 of the table.

274 Switching Theory

When the third clock pulse arrives, flip-flop A sets and its output QA becomes 1, which does
not change the state of the B or the C flip-flop. The counter output is now as shown in row 3
of the table. When the fourth pulse occurs, flip-flop A resets and QB becomes 0 which in turn
resets flip-flop B and QB becomes 0, which sets flip-flop C and its output changes to 1.

Table 7.1 Count-up sequence of a 3-bit binary counter

Input pulse Count

22 21 20

Qc QB QA

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1 RECYCLE

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

When the 5th clock pulse arrives, flip-flop A sets and QA becomes 1; but the other flip-
flops remain unchanged. The number stored in the counter is shown in the 6th row of the
table. The 6th pulse resets flip-flop A and at the same time flip-flop B and C are set. The 7th
pulse sets all the flip-flops and the counter output is now shown in the last row of the table.

The next clock pulse will reset all the flip-flops, as the counter has reached its maximum
count capability. The counter has in all 8 states. In other words it registers a count of 1 for
every 8 clock input pulses. It means that it divides the number of input pulses by 8. It is thus
a divide by 8 counter.

Count Capability of Ripple Counters
If you refer to Table 7.1 and the waveform diagram, Fig. 7.14, it will be apparent to you

that the counter functions as a frequency divider. The output frequency of flip-flop A is half
the input frequency and the output of flip-flop B is one-fourth of the clock input frequency.
Each flip-flop divides the input frequency to it by 2. A 3-bit counter will thus divide the clock
input frequency by 8.

Another important point about counters is their maximum count capability. It can be
calculated from the following equation

N = 2n – 1
where N is the maximum count number and

 n is the number of flip-flops.
For example if n = 12, the maximum count capability is

N = 212 – 1 = 4095
If you have to calculate the number of flip-flops required to have a certain count capability,

use the following equation :
n = 3.32 log10 N

For example if the required count capability is 5000
n = 3.32 log10 5000 = 12.28

which means that 13 flip-flops will be required.

Shift Registers and Counters 275

Counting Speed of Ripple Counters
The primary limitation of ripple counters is their speed. This is due to the fact that each

successive flip-flop is driven by the output of the previous flip-flop. Therefore, each flip-flop in the
counter contributes to the total propagation delay. Hence, it takes an appreciable time for an
impulse to ripple through all the flip-flops and change the state of the last flip-flop in the chain.
This delay may cause malfunction, if all the flip-flops change state at the same time. In the
counter we have just considered, this happens when the state changes from 011 to 100 and from
111 to 000. If each flip-flop in the counter changes state during the course of a counting operation,
and if each flip-flop has a propagation delay of 30 nanoseconds, a counter having three flip-flops
will cause a delay of 90 ns. The maximum counting speed for such a flip-flop will be less than.

1
90

109× or 11.11 MHz.

If the input pulses occur at a rate faster than 90 ns, the counter output will not be a
true representation of the number of input pulses at the counter. For reliable operation of
the counter, the upper limit of the clock pulses of the counter can be calculated from

f =
1 109

nt
×

where n is the number of flip-flops and

 t is the propagation delay of each flip-flop.

7.4.3 4-BIT BINARY RIPPLE UP-COUNTER
A 4-bit binary ripple up-counter can be built with four T-type flip-flops. The diagram will

follow the same pattern as for a 3-bit up-counter. The count-up sequence for this counter is given
in Table 7.2 and a waveform diagram is given in Fig. 7.15. After the counter has counted up to

Table 7.2 Count-up sequence of a 4-bit binary up-counter

Input pulse Count
23 22 21 20

QD QC QB QA

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0 RECYCLE
9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

16 or 0 0 0 0 0

276 Switching Theory

1111, it recycles to 0000 like the 3-bit counter. You must have observed that each flip-flop divides
the input frequency by, 2 and the counter divides the frequency of the clock input pulses by 16.

C
lo

ck

1 0

1 0 1 0 1 0 1 0

Q
A

Q
B

Q
C

Q
D

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0

0
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0

0
0

0
0

1
1

1
1

0
0

0
0

1
1

1
1

0

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

0

Fig. 7.15 Waveform for 4-bit binary up-counter

Shift Registers and Counters 277

7.4.4 3-Bit Binary Ripple Down Counter
The binary ripple up-counter we have just considered increases the count by one, each

time a pulse occurs at its input. The binary ripple down counter which we are going to
consider in this section decreases the count by one, each time a pulse occurs at the input.
A circuit for a 3-bit down counter is given in Fig. 7.16. If you compare this counter with the
up-counter in Fig. 7.13 the only difference you will notice is that, in the down counter in
Fig. 7.16 the complement output Q, instead of the normal output, is connected to the clock
input of the next flip-flop. The counter output which is relevant even in the down counter is
the normal output, Q, of the flip-flops.

Q A Q B Q C

Q CQ BQ A1 1 1

C lock
Pu lses

Q Q Q

T T T

Fig. 7.16 3-bit binary ripple down counter

We can now analyze the circuit and examine its operation. It will help you to follow the
operation of the counter, if you refer to Table 7.3 and waveform of the counter given in
Fig. 7.17 for each input pulse count. Let us assume that the counter is initially reset, so that
the counter output is 0 0 0. When the first input pulse is applied, flip-flop A will set, and its
complement output will be 0. This will set flip-flop B, as there will be a 1 → 0 transition at
the clock input. The counter output will now be 1 1 1.

Table 7.3 Count-down sequence of a 3-bit binary counter

Clock pulse Count

22 21 20

QC QB QA

0 0 0 0

1 1 1 1

2 1 1 0

3 1 0 1

4 1 0 0 RECYCLE

5 0 1 1

6 0 1 0

7 0 0 1

8 0 0 0

When the second clock pulse is applied, flip flop A will reset and its complement output
will become 1, which will not affect the other flip-flops. The counter output will now be 1 1
0 as shown in row 3 of the Table 7.3.

When the third clock pulse occurs, flip-flop A will set and its complement output will
become 0, which will reset flip-flop B, its output becomes 0, and the complement output will

278 Switching Theory

be 1, which will not affect the other flip-flops. The counter will now show an output of 1 0
1, as in the fourth row of the table.

You will notice that every clock pulse decrements the counter by 1. After the eighth clock
pulse, the counter output will be 0 0 0 and the counter will recycle thereafter.

The waveform for this 3-bit down counter is given in Fig. 7.17.

Fig. 7.17 Waveform for 3-bit binary down-counter.

7.4.5 Up-Down Counters
The counters which we have considered so far can only count up or down; but they

cannot be programmed to count up or down. However, this facility can be easily incorporated
by some modification in the circuitry. You might recall that in an up-counter the normal
output of a flip-flop is connected to the clock input of the following flip-flop, and in a down
counter it is the complement output which is connected to the clock input of the following
flip-flop. The change from normal to complement connection to the clock input of the following
flip-flop can be easily managed. A circuit for this purpose is shown in Fig. 7.18.

The normal and complement outputs of flip-flops are connected to AND gates D and E
and the output of the AND gates goes to the clock input of the next flip-flop via OR gates F.
When the up-down control is binary 1, gates D and F are enabled and the normal output of
each flip-flop is coupled via OR gates F to the clock input of the next flip-flop. Gates E are
inhibited, as one input of all these gates goes low because of the Inverter. The counter,
therefore, counts up.

When the up-down control is binary 0, gates D are inhibited and gated E are enabled.
As a consequence the complement output of each flip-flop is coupled via OR gates F to the
clock input of the next flip-flop. The counter, therefore, counts down.

Clock

J Q

QK

D

E

FCLK
A

J Q

QK

D

E

FCLK
B

J Q

QK

CLK
C

Up down
contro l

Fig. 7.18 Up-down counter

Shift Registers and Counters 279

7.4.6 Reset and Preset Functions
Reset and Preset functions are usually necessary in most counter applications. When

using a counter you would, in most cases, like the counter to begin counting with no prior
counts stored in the counter. Resetting is a process by which all flip-flops in a counter are
cleared and they are thus in a binary O state. JK flip-flops have a CLEAR or RESET input
and you can activate them to reset flip-flops. If there are more than one flip-flop, the reset
inputs of all flip-flops are connected to a common input line as shown in Fig. 7.19.

You will notice that the reset inputs of all the flip-flops in the counter are active low, and
therefore, to reset the counter you take the reset input line low and then high. The output
of the counter will then be 0 0 0 0.

At times you may want the counter to start the count from a predetermined point. If you
load the required number into the counter, it can start counting from that point. This can
be easily accomplished by using the arrangement shown in diagram. The preset inputs of all
the flip-flops are connected to NAND gate outputs. One input of each NAND gate is connected
to a common PRESET line and the desired number is fed into the other inputs of the NAND
gates. To load a number into the counter, first clear the counter and then feed the required
number into the NAND gates as indicated in the diagram. When you take the PRESET line
high momentarily, the output of NAND gates 1 and 4 will be 1, so flip-flops A and D will
remain reset. The output of gates 2 and 3 will be 0 and so flip-flops B and C will be set. The
number stored in the counter will now be 0 1 1 0, which is the number required to be loaded
in the counter.

J Q

K Q

CLK A

PRE

CLR

Counter
Inpu t

Reset

Q A

1

J Q

K Q

CLK B

PRE

CLR

Q B

2

J Q

K Q

CLK C

PRE

CLR

Q C

3

J Q

K Q

CLK D

PRE

CLR

Q D

4

Preset

+V C C

0 1 1 0

Fig. 7.19

It is also possible to load a number in a counter in a single operation, by using the
arrangement shown in Fig. 7.20.

The arrangement for data transfer, which is a single pulse operation makes use of the
Preset and Clear inputs of the flip-flops. When the clock pulse is low, the output of both
NAND gates 1 and 2 is high, which has no effect on the Preset and Clear inputs of the flip-
flop and there is no change in its output. If the D0 input is high, the output of NAND gate
1 will go low when the clock pulse goes high. This will result in output QA going high at the
same time. Since one input of NAND gate 2 will be low at this time, the clear input to the
flip-flop remains high.

280 Switching Theory

2 1

J Q

K Q

CLK A

PRE

CLR

Q A

D 0

J Q

K Q

CLK B

PRE

CLR

D 1

J Q

K Q

CLK C

PRE

CLR

D 2

J Q

K Q

CLK D

PRE

CLR

D 3

QB Q C Q D

C lock
Inpu t

Fig. 7.20 Single pulse data transfer

If the D0 input is low and the clock pulse goes high, the output of NAND gate 1 will
remain high, which will have no effect on the Preset input. The output of NAND gate 2 will
go low, which will clear the flip-flop and QA will go low.

7.4.7 Universal Synchronous Counter Stage
The up and down counters which we have considered so far are asynchronous counters,

also known as ripple counters, for the simple reason that, following the application of a clock
pulse, the count ripples through the counter, since each successive flip-flop is driven by the
output of the previous flip-flop. In a synchronous counter all flip-flops are driven simultaneously
by the same timing signal.

The asynchronous counter, therefore, suffers from speed limitation as each flip-flop
contributes to the total propagation delay. To overcome this draw-back, flip-flops with lower
propagation delay can be used; but the ideal solution is to use synchronous counters. In these
counters the circuit is so arranged that triggering of all flip-flops is done simultaneously by
the input signal, which is to be counted. In these counters the total propagation delay is the
delay contributed by a single flip-flop.

J

K

CLK A

Q

Q

1

CLK

CLR

1 2

Q A

J

K

CLK B

Q

Q

Q B

J

K

CLK C

Q

Q

Q C

J

K

CLK D

Q

Q

Q D

Fig. 7.21 (a) Synchronous counter

The design concept used in the synchronous counter shown in Fig. 7.21 (a) uses counter
stage blocks and this design concept lends itself to building large synchronous counters.
Counter modules of the type used in this circuit and also shown separately in Fig. 7.21 (b)
can be interconnected to build counters of any length.

Shift Registers and Counters 281

J

K

CLK

Q

Q

Carry
Inpu t

Carry
O utpu t

C lock

Fig. 7.21 (b) Universal counter stage block.

Let us consider the synchronous counting circuit shown in Fig. 7.21(a). It is a 4-bit
counter and the clock inputs of all the flip-flops are connected to a common clock signal,
which enables all flip-flops to be triggered simultaneously. The Clear inputs are also connected
to a common Clear input line. The J and K inputs of each flip-flop are connected together,
so that they can toggle when the JK input is high. The JK input of flip-flop A is held high.
Also notice the two AND gates 1 and 2, and the way they are connected. Gate 1 ensures that
the JK input to flip-flop C will be binary 1 when both inputs QA and QB are binary 1. AND
gate 2 ensures that the JK input to flip-flop D will be binary 1 only when outputs QA, QB and
QC are binary 1.

We can now look into the output states required for the flip-flops to toggle. This has been
summarized below :

1. Flip-flop A toggles on negative clock edge.

2. Flip-flop B toggles when QA is 1

3. Flip-flop C toggles when QA and QB are 1

4. Flip-flop D toggles when QA, QB are QC are 1

This means that a flip-flop will toggle only if all flip-flops preceding it are at binary
1 level.

We can now look into the counting process of this counter. We begin by resetting the
counter, which is done by taking CLR temporarily low.

MSB LSB

QD QC QB QA

0 0 0 0

Since QA is low and J and K are high, the first negative clock edge will set flip-flop A.
The counter output will now be as follows:

QD QC QB QA

0 0 0 1 After 1st clock pulse.

When the second negative clock edge occurs, both A and B flip-flops will toggle and the
counter output will change to the following:

QD QC QB QA

0 0 1 0 After 2nd clock pulse.

282 Switching Theory

When the third clock pulse arrives, flip-flop B will not toggle as QA is 0 but flip-flop A
will toggle. The counter will show the following output.

QD QC QB QA

0 0 1 1 After 3rd clock pulse.

The fourth clock pulse will toggle flip-flops A, B and C, as both QA and QB are 1. The
counter output is now as follows:

QD QC QB QA

0 1 0 0 After 4th clock pulse.

The counter will continue to count in the binary system until the counter output registers
1 1 1 1, when it will be reset by the next clock pulse and the counting cycle will be repeated.

7.4.8 Synchronous Counter ICs
Many types of counter ICs are available and it is very likely that one of these will meet

your design requirements. You may not, therefore, find it necessary to design your own
counter. However, should that become necessary, a variety of JK flip-flops are available, with
which you can design one to meet your specific needs.

Some of the counter ICs available are listed below :

Counter type Parallel load IC No.

1 Decade Up Synchronous 74160

Synchronous 74162

2 Decade Up/Down Synchronous 74168

Synchronous 74ALS568

Asynchronous 74ALS190

Asynchronous 74ALS192

3 4-bit binary Up counter Synchronous 74161

Synchronous 74163

4 4-bit binary Up/Down Synchronous 74169

counter Asynchronous 74191

Asynchronous 74193

Asynchronous 74ALS569

All the counters listed here have parallel load capability, which implies that a binary data
input applied to the counter will be transferred to the output when the load input on the counter
is asserted. The load operation may be synchronous or asynchronous. If it is asynchronous, the
data applied will be transferred to the output as soon as the load input is asserted.

In case it is synchronous, the data will not be transferred to the output until the next
clock pulse occurs. In either case the counters will begin to count from the loaded count when
clock pulses are applied.

The decade up-counters count from 0000 to 1001. Decade up-and down-counters can be
programmed to count from 0000 to 1001, or from 1001 to 0000. 4-Bit binary counters in the
up-count mode count from 0000 and 1111 and in the down-count mode count from 1111 to 0000.

Shift Registers and Counters 283

We will now discuss the facilities available in counter IC 74193 and its operating procedures.
Pin connections for this IC are given in Fig. 7.22. Fig. 7.23(a) gives its traditional symbol and
Fig. 7.23 (b) gives the IEEE/IEC symbol.

7.4.8.1 Counter Functions

Clear (Reset) Function
As the Clear input is active high, it is normally held low. To clear the counter it is taken

high momentarily.

Fig. 7.22 Pin connections for IC 74193

8 16 3 2 6 7

14 11 15 1 10 9

CLEAR LOA D A B C D

DO W N

UP
5

4

CO

BO

12

13

G ND V C C Q A Q B Q C Q D

74193

Fig. 7.23 (a) Traditional symbol for IC 74193

Load (Preset) Function
To load the counter with a predetermined 4-bit binary number, it is fed into the parallel

data inputs A, B and C and D. The number is shifted into the counter by taking the LOAD
input momentarily low. Both Clear and LOAD inputs are asynchronous and will override all
synchronous counting functions.

284 Switching Theory

CLR

UP

14
5

DO W N
4

11LOA D

15
1
10
9

A
B
C
D

3D 1
2
4
8

3
2
6
7

Q
Q
Q
Q

A

B

C

D

13

12
CO

BO

1 CT = 15

2 CT = 0

CT = 0

2 +

G 1

1–

G 2

G 3 74193

Fig. 7.23 (b) IEEE/IEC symbol for IC 74193

Carry out (CO) and Borrow Out (BO) Functions

These inputs are used to drive the next IC74193, if a larger count capability is required.
While cascading these counters, the CO and BO outputs of a previous counter are connected
to the UP and Down inputs respectively, of the next counter in the chain.

Up-counting Function
For counting up, the counter is connected as shown in Fig. 7.24. In the up-counting mode

the carry output CO remains high, until the maximum count 1111 is reached, when the carry
output goes low. At the next clock pulse the counter output falls to 0 0 0 0 and the carry output

CO goes high. If there is another IC in cascade, it will be incremented from 0 0 0 0 to 0 0 0 1.

8 16 3 2 6 7

14 11 15 1 10 9
CLEAR LOA D A B C D

DO W N

UP
5

4

CO

BO

12

13

G ND V C C Q A Q B Q C Q D

74193

+5V

C lock

+5V

Fig. 7.24 Counter connected to count up

Down-counting Function
For down-counting connection are made as shown in Fig. 7.25. In the down-counting

operation the borrow output BO stays high until the minimum count 0 0 0 0 is reached, when
the borrow output BO drops low. The borrow output detects the minimum counter value.

At the next input pulse the counter output rises to 1 1 1 1 and there is a 0 → 1 transition
at the borrow output BO. If another counter is connected in cascade it will be decremented.

Shift Registers and Counters 285

8 16 3 2 6 7

14 11 15 1 10 9
CLEAR LOA D A B C D

DO W N

UP
5

4

CO

BO

12

13

G ND V C C Q A Q B Q C Q D

74193

+5V

+5V

C lock

Fig. 7.25 Counter connected to count down

Presetting (Up-Counting Mode)
The counter can be preset to any 4-bit binary number, which is first fed into the parallel

inputs A, B, C and D, and the load input is held low momentarily, which shifts the number
into the counter. It is not necessary to reset the counter before presetting it. Let us suppose
that the number shifted into the counter 1 0 1 0 and the counter is made to count up. The
counter output will be stepped up after each input pulse and after the 6th pulse the output
will be 0 0 0 0. The counting up begins from the number preset in the counter and the 6th
pulse resets the counter and then it starts counting up from this point.

Presetting (Down-Counting Mode)
The counter is set up in the down-counting mode and, as before, suppose the number

fed into the counter is 1 0 1 0 and the counter is made to count down. The 10th, input pulse
will reset the counter to 0 0 0 0 and the 11th, pulse will show a count of 1 1 1 1 and then
it will begin to count down from this number.

Presetting (Using Counter Output)
The counter can also be preset by connecting it as shown in Fig. 7.26. The desired

number, say 1 0 1 0 is fed into the A B C D inputs and the counter input is connected to a
1 Hz clock signal when the counter reaches the maximum, count, 1 1 1 1, the NAND gate
output will go low and the binary number 1 0 1 0 will be shifted into the counter. The counter
will now begin to count up from this preset number and when the count again reaches 1 1
1 1, the counter will return to the preset number 1 0 1 0 and will again begin to count up
as before. You will notice that as soon as the counter reaches the maximum count 1 1 1 1
(or decimal 15), it is immediately preset to 1 0 1 0 (or decimal 10). Since state 15 is being
used to preset the counter, it is no longer a stable state. The stable states in this counting
operation will be 10, 11, 12, 13 and 14, and the modulus (number of discrete states) of the
counter will be 5.

The counter modulus in the up-counting mode for any preset number n is given by

Modulus = 16 – n – 1

In this case Modulus = 16 – 10 – 1 = 5

286 Switching Theory

Fig. 7.26 Presetting using counter output

In the down-counting mode, the counter will count down from the preset number, 1010
(or decimal 10). As before the counter will count down as follows; 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.
In this case the counter modulus will be as follows :

Modulus = n + 1

In this case Modulus = 10 + 1 = 11

When the counter is preset in this manner, it should never be preset to number 15 as
this is not a stable state, and it is likely to get latched up in this state.

Modulo N Counter Using IC 74193
In Sec. 7.4.8 you have seen how this IC can count up or down from a preset number.

In fact it can function as a modulo counter by using a NAND gate to preset the counter to
the desired number. There is a simpler way of implementing a modulo counter with this IC,
but it has some drawbacks which we will discuss shortly. A circuit for a modulo counter using
this IC in the down-counting mode is given in Fig. 7.27.

8 16 3 2 6 7

14 11 15 1 10 9
CLEAR LO AD A B C D

DO W N

UP
5

4

CO

BO

12

13

G ND VC C Q A Q B Q C Q D

74193

+5V

C lock

Fig. 7.27 IC 74193 connected as a modulus counter

Shift Registers and Counters 287

Clock pulses are applied at the down-count input and the up-count input is held high. Also

observe that the borrow output BO is connected to the load input. The borrow output detects
the state of the borrow output when the count reaches 0 0 0 0. Since it is connected back
to the load input, the binary number loaded into the A B C D inputs is shifted into the
counter. The decimal number loaded into the counter represents its modulus.

To operate the counter load, the binary equivalent of the decimal number representing
the required modulus into the ABCD inputs and apply clock pulses at the down-count input.
If the binary number loaded into the counter is 1 0 0 0 (decimal 8) and the counter is
decremented with clock pulses, the modulus number that is 1 0 0 0 will be loaded into the
counter, as soon as the output reaches the state 0 0 0 0. It will again count down to 0 0 0
0 and will again be preset to 1 0 0 0.

You must have realized that as soon as the preset number is loaded into the counter,
the borrow output, that is 0 0 0 0 will disappear. It is important, therefore, that the borrow
output state, 0 0 0 0, must be of sufficient duration to enable the preset number to be shifted
into the counter. This implies that the propagation delay of the gates responsible for presetting
the counter to the number at the A B C D inputs must be of shorter duration than the
duration of the clock pulse. To a certain extent this can be ensured by introducing some delay
between the borrow output and the load input. This can be done by connecting an even

number of inverters between the borrow output BO and the load input.

7.4.9 Modulus Counters
The modulus of a counter, as discussed before, is the number of discrete states a counter

can take up. A single flip-flop can assume only two states 0 and 1, while a counter having two
flip-flops can assume any one of the four possible states. A counter with three flip-flops will
have 8 states and so on. In short the number of states is a multiple of 2. With n flip-flops
the number of possible states will be 2n. Thus by building counters which count in the normal
binary sequence, we can build counters with modulus of 2, 4, 8, 16 etc. In these counters the
count increases or decreases by 1 in pure binary sequence. The problem arises in building
counters whose modulus is 3, 5, 7, 9 etc. For instance, if we need, a counter with a modulus
of 3, we have to use a counter with a modulus of 4 and so arrange the circuit that it skips
one of the states. Similarly, for a counter with a modulus of 5 we require 23 or 8 states and
arrange the circuit so that it skips 3 states to give us a modulus of 2n – 3 or 5 states. Thus
for a modulus N counter the number n of flip-flops should be such that n is the smallest
number for which 2n > N. It, therefore, follows that for a decade (mod-10) counter the number
of flip-flops should be 4. For this counter we shall have to skip 24 – 10 or 6 states. Which
of these states are to be skipped is a matter of choice, which is largely governed by decisions
which will make the circuit as simple as possible.

Many methods have been developed for designing such counters. We will consider the following:

(1) Counter Reset Method
In this method the counter is reset after the desired count has been reached and the

count cycle starts all over again from the reset state.

(2) Logic Gating Method
This method provides the exact count sequence required without any need to reset the

counter at some stage.

288 Switching Theory

(3) Counter Coupling Method
This method is used to implement counters of the required modulus. For instance we

can interconnect mod-2 and mod-3 counters to implement a modulus 3 × 2 or mod-6 counter.

7.4.10 Counter Reset Method (Asynchronous Counters)
Let us first consider the typical case of a counter which has 3 states as shown in

Fig. 7.28.

7.4.10.1 Mod-3 Counter

0

2 1

Fig. 7.28 State diagram for a mod-3 counter

It is obvious that a mod-3 counter will require two flip-flops which, when connected as
a counter, will provide four states as shown in Table 7.4.

Table 7.4 States for a two flip-flop counter

QA QB Count value

LSB (Decimal)

0 0 0

1 0 1

0 1 2

1 1 3

0 0 0

This counter counts in the binary sequence 0, 1, 2, 3 and then it returns to 0, the
starting point. Each count is referred to as a state. If we are building a mod-3 counter, the
most convenient solution is to skip state 3 and then return to state 0 from state 2 and then
again go through states 0, 1, 2 before returning to state 0. What we need is a combinational
logic circuit, which will feed a reset pulse to the counter during state 3, and immediately after
state 2, which is the last desired state. This reset pulse is applied to the CLR inputs which
resets the counter to 0 after state 2.

A circuit diagram for a mod-3 counter together with the required combinational logic is
given in Fig. 7.29.

When both outputs QA and QB are 1, the output of the NAND gate, which provides the
reset pulse, goes low and both the flip-flops are reset. The counter returns to state 0 and it
starts counting again in 0, 1, 2, 0 sequence. The waveforms for this counter are given in
Fig. 7.30.

Shift Registers and Counters 289

Fig. 7.29 Modulo-3 counter

Fig. 7.30 Waveform for Mod-3 counter

7.4.10.2 Mod-5 Counter
The minimum number of flip-flops required to implement this counter is three. With

three flip-flops, the number of states will be 8. A modulo-5 counter will have only 5 states.
A state diagram for this counter is given in Fig. 7.31. It will progress from state 000 through
100. The truth table for this counter, which will determine the stage at which the reset pulse
should be applied, is given in Table 7.5.

0

4

3 2

1 001

010011

100

000

Fig. 7.31 State diagram for Mod-5 counter

290 Switching Theory

The truth table shows that state 5 will be the reset state and that states 6 and 7 will
be the don’t care states. The next step is to plot the states on a map as shown in Fig. 4.39.

Table 7.5 Truth table for Mod-5 Counter

QA QB QC State

LSB

0 0 0 0

1 0 0 1

0 1 0 2

1 1 0 3

0 0 1 4

1 0 1 5

0 1 1 6 X

1 1 1 7 X

X, Don’t care states

0

0

0

4

X

6

0

2

A 0

0

1

1

5

X

7

0

3

A 1

B C B C
00 01

B C
11

B C
10

Fig. 7.32

The map shows that the reset pulse is determined by R = Q Q QA B C. . . The logic diagram
for this counter is given in Fig. 7.33. The diagram shows that a reset pulse will be applied
when both A and C are 1. You may have noticed that the reset pulse shown in Fig. 7.30 for
the Mod-3 counter was very narrow and in some cases it may not be suitable to control other
logic devices associated with the counter. The Mod-5 counter circuit Fig. 7.33 incorporates an
RS flip-flop, which produces a reset pulse, the width of which is equal to the duration for
which the clock pulse is low. The way it works is like this. State 5 is decoded by gate D, its
output goes low, the RS flip-flop is set, and output Q goes low, which resets all the flip-flops.

The leading edge of the next clock pulse resets the RS flip-flop, Q goes high which removes
the reset pulse. The counter thus remains reset for the duration of the low time of the clock
pulse. When the trailing edge of the same clock pulse arrives, a new cycle is started. The
waveform for Mod-5 counter is given in Fig. 7.34.

Shift Registers and Counters 291

Fig. 7.33 Modulus-5 counter

1

0

1

0

1

0

1

0

1

0

1 2 3 4 5 6 7

0 1 0 1 0 0 1 0

0 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 1 2 3 4 0 1 2
Counter
State

Reset
Pu lse

QC

QB

QA

C lock
Pu lse

Counter in Rese t
State EO R th is period

Fig. 7.34 Waveform for Modulus-5 asynchronous counter

7.4.10.3 Mod-10 (Decade) Counter
The decade counter discussed here is also an asynchronous counter and has been

implemented using the counter reset method. As the decade counter has ten states, it will
require four flip-flops to implement it. A state diagram for this counter is given in Fig. 7.35
and the truth table is given in Table 7.6.

292 Switching Theory

0 1
2

3

4

5

6
789

Last desired
State

Counter gu ided
to S tate 0 by
Exte rna l Logic

Fig. 7.35 State diagram for decade counter

Table 7.6 Truth table for decade counter

QA QB QC QD State

LSB

0 0 0 0 0

1 0 0 0 1

0 1 0 0 2

1 1 0 0 3

0 0 1 0 4

1 0 1 0 5

0 1 1 0 6

1 1 1 0 7

0 0 0 1 8

1 0 0 1 9

0 1 0 1 10

1 1 0 1 11 X

0 0 1 1 12 X

1 0 1 1 13 X

0 1 1 1 14 X

1 1 1 1 15 X

The table shows that state 9 will be the last desired state and state 10 will be the reset
state. State 11, 12, 13, 14 and 15 will be the don’t care states. The next step is to plot the
states on a map to determine the reset pulse. This has been done in Fig. 7.36.

The map shows that the reset pulse is determined by the following expression:

R = Q Q Q QA B C D. . .

Shift Registers and Counters 293

Fig. 7.36

The decade counter circuit Fig. 7.37 is essentially a binary ripple counter, which can
count from 0000 to 1111; but since a decade counter is required to count only from 0000 to
1001, a reset pulse is applied at count 10 when the counter output is Q Q Q QA B C D. . . . In order
to have control over the reset pulse width, a 4-input NAND gate is used to decode state 10.

Fig. 7.37 Decade (Mod-10) asynchronous counter using count reset and pulse width control.

294 Switching Theory

To decode count 10, logic inputs that are all one at the count of 10, are used to feed the NAND
gate. At this count the NAND gate output goes low providing a 1 → 0 change which triggers
the one-shot unit. The Q output of the one shot unit is used, as it is normally high and it
goes low during the one-shot timing period, which depends on the RC constants of the circuit.
The timing period of the one-shot can be a adjusted, so that the slowest counter state resets.
Although only A and D flip-flops need to be reset, the reset pulse is applied to all the flip-flop
to make doubly sure that all flip-flops are reset.

1 0

1
2

3
4

5
6

7
8

9

Q
C

Q
B

Q
A

C
lo

ck
P

ul
se

10

0
1

0
1

0
1

0
1

0
1

0

0
0

1
1

0
0

1
1

0
0

0

0
0

0
0

1
1

1
1

0
0

0

0
0

0
0

0
0

0
0

1
1

0

1 0 1 0 1 0

Q
D

1 0 1 0
0

1
2

3
4

5
6

7
8

9
0

C
ou

nt
er

S
ta

te

R
es

et
P

ul
se

F
ig

.
7.

38

W
av

ef
or

m
 f

or
 d

ec
ad

e
co

un
te

r

Shift Registers and Counters 295

Since decade (Modulus-10) counters have 10 discrete starts, they can be used to divide
the input frequency by 10. You will notice that at the output of the D-flip-flop, there is only
one output pulse for every 10 input pulses. These counters can be cascaded to increase count
capability.

The waveform for this counter is shown in Fig. 7.38.

7.4.11 Logic Gating Method
The counter reset method of implementing counters, which we have discussed in the

previous section, has some inherent drawbacks. In the first place, the counter has to move
up to a temporary state before going into the reset state. Secondly, pulse duration timing is
an important consideration in such counters, for which purpose special circuits have to be
incorporated in counter design.

We will now consider another approach to counter design, which provides for the exact
count sequence. We will discuss the design of some modulus counters to illustrate the
procedures.

7.4.11.1 Mod-3 Counter (Synchronous)
Let us suppose that we are required to design a modulo-3 counter which conforms to the

truth table given in Table 7.7.

Table 7.7 Truth table for Mod-3 Counter

Input pulse count Counter states

A B

0 0 0

1 1 0

2 0 1

3 0 0

Based on this truth table, the output waveform for this Mod-3 counter should be as
shown in Fig. 7.39.

1 2 3 4

0 1 0 0 1

0 0 1 0 0

1

0

1

0

1

0

C lock

A

B

Fig. 7.39 Waveform for Mod-3 counter

You will notice from the waveform of the counter, that flip-flop A toggles on the trailing
edge of the first and second pulses. Also observe that flip-flop B toggles only on the second

296 Switching Theory

and third clock pulses. We have to bear this in mind, in figuring out logic levels for the J and
K inputs of the flip-flops.

Suppose that initially both the flip-flops are reset. Since flip-flop A has to toggle when the
trailing edges of the first and the second clock pulses arrive, its J and K inputs should be at
logic 1 level during this period. This is achieved by connecting the K input to logic 1 level

and the J input to the complement output of flip-flop B, as during this period the B output
of flip-flop B is at a high logic level. In this situation, the first clock pulse produces a logic
1 output and the second clock pulse produces a logic 0 output.

The J input of flip-flop B is connected to the normal output of flip-flop A. Therefore, when
the first clock pulse arrives, the J input of flip-flip B is low. Its output will remain low as you
will notice from the truth table and the waveform. The second pulse is required to toggle this
flip-flop and its K input is, therefore held high. When the second clock pulse arrives, the flip-
flop will toggle as both the J and K inputs are high. The output will go high. At the same
time its complement output will be low, which makes the J input of flip-flop A low.

When the third clock pulse arrives, the output of flip-flop A will go low. Since after the
second clock pulse the output of flip-flop A was already low, the third clock pulse produces a
low output at flip-flop B. Both the A and B flip-flops are now reset and the cycle will be
repeated.

A logic diagram for the Mod-3 counter is given in Fig. 7.40.

A

A

K A

JA

CLK

B

B

K B

JB

CLK

1

C lock

A B

1

Fig. 7.40 Mod-3 counter (Synchronous)

7.4.11.2 Mod-5 Counter (Asynchronous)
We will use the same procedure to design a mod-5 counter as before. The truth table

required for this counter is given in Table 7.8.

Table 7.8 Truth table for Mod-5 counter

Input pulse Counter states

count A B C

0 0 0 0

1 1 0 0

2 0 1 0

3 1 1 0

4 0 0 1

5 0 0 0

Shift Registers and Counters 297

The waveform for this counter based on this truth table is given in Fig. 7.41. You will
notice from the truth table and the waveform that the A flip-flop complements each input
pulse, except when the normal output of flip-flop C is logic 1, which is so after the trailing
edge of the 4th, clock pulse. It, therefore, follows that the K input of flip-flop A should be a
constant logic 1 and the J input should be connected to the complement output of flip-flop will
be 0 when C is 1 so that the output of flip-flop A remains low after the trailing edge of the
5th clock pulse.

If you observe the changing pattern of the output of the B flip-flop, you will notice that
it toggles at each transition of the A output from 1 → 0. It is, therefore, obvious that the A
output should be connected to the clock input of the B-flip-flop and the J and K inputs of this
flip-flop should be at logic 1 level.

1 2 3 4 5

0 1 0 1 0 0

0 0 1 1 0 0

1

0

1

0

1

0

C lock

A

B

0 0 0 0 1 0

1

0

C

Fig. 7.41 Waveform for Mod-5 counter

After the 3rd clock pulse, the outputs of A and B flip-flops are 1. An AND gate is used
to make the J input to flip-flop C as 1 when both A and B are 1. The K input to flip-flop C
is also held at logic 1 to enable it to toggle. The clock is also connected to the clock input
to flip-flop C, which toggles it on the 4th, clock pulse and its output becomes 1. When the
5th, clock pulse arrives, the J input to flip-flop C is 0 and it resets on the trailing edge of this
clock pulse. Thereafter the cycles are repeated. The logic diagram for the mod-5 counter is
given in Fig. 7.42.

Fig. 7.42 Logic diagram for Mod-5 counter

298 Switching Theory

7.4.11.3 Mod-10 (Decade) Counter (Asynchronous)
The truth table for a Decade counter is given in Table 7.9.

Table 7.9 Truth Table for Decade counter

Input pulse Counter states

count A B C D

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 (0) 0 0 0 0

The waveform for this counter based on this truth table is given in Fig. 7.43.

1

0

1 2 3 4 5 6 7 8 9

C

B

A

C lock 10

0 1 0 1 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1 0 0 0

0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0D

1

0

1

0

1

0

1

0

Fig. 7.43 Waveform for Decade Counter

If you compare truth Table 7.9 for the Decade counter with Table 7.2 which gives the
count-up sequence for a 4-bit binary up-counter, you will notice a close similarity between the
two, up to input pulse 8. You will also notice a close resemblance between waveforms of
Fig. 7.43 and Fig. 7.15 up to a certain point.

The count ripples through the A, B and C flip-flops for the first seven input pulses, as
in the standard 4-bit binary up-counter. At this point the counter will show an output of 1 1
1 0 (decimal 7). On the application of the 8th pulse, flip-flops A, B and C must reset and the
D output should be 1, that is the counter state should change from 1 1 1 0 to 0 0 0 1. In order
that the J input to flip-flop D is 1, so that when K is 1 the D flip-flop output goes from 0 to

Shift Registers and Counters 299

1; B and C outputs are applied to the input of an AND gate and its output goes to the J input.
In order that the B and C outputs are 0, when D output is 1 for the 8th and the 9th count,
the complement output of the D flip-flop which will be 0 when D is 1, is connected to the J
input of the B flip-flop.

After the trailing edge of the 8th pulse D becomes 1 and A, B and C become 0, the 9th
pulse is required to change the output from 0 0 0 1 to 1 0 0 1. Since no change is required
in the D output, the D-flip-flop is triggered by the A output. When the 9th pulse arrives, the
A output changes from 0 to 1, but this causes no change in the D output. When the 10th input
pulse arrives, it changes the A output from 1 to 0, which changes the D output from 1 to 0.
The counter output changes from 1 0 0 1 to 0 0 0 0. During the 9th and the 10th pulses, the
B and C outputs will remain unchanged.

A logic diagram for the Decade counter is given in Fig. 7.44.

Fig. 7.44 Logic diagram for Decade counter

7.4.12 Design of Synchronous Counters
In most of the counter designs we have considered so far, the flip-flops are not triggered

simultaneously. In synchronous counters all stages are triggered at the same time. The output
of each stage depends on the gating inputs of the stage. If you refer to previous counter designs,
you will observe that the gating inputs have been assigned values to give the desired outputs.

The basic framework of a synchronous counter would be somewhat like the partial logic
diagram given in Fig. 7.45. You will notice that all the clock inputs are connected to a common
line and the J and K inputs of the flip-flops have been left open. They are required to have the
values necessary to give the required outputs after each input pulse. The J and K inputs of each
flip-flop are therefore required to have the values which produce the desired counter states at
each input pulse. The entire purpose of the exercise is to determine the input values for each
stage. A typical design procedure can be summed up in the following steps.

Q AKA

JA

CLK A

A

Q A

Q BKB

JB

CLK B

B

Q B

C lock

Fig. 7.45

300 Switching Theory

(a) Write the desired truth table for the counter.
(b) Write the counter transition table which should list the starting state and the

subsequent states the counter is required to take up.
(c) With the help of the excitation table and using the counter transition table, write

down the input values for the J and K inputs to enable each flip-flop to attain the
output state as required by the transition table.

(d) Prepare Karnaugh maps for the J and K inputs of each stage.
(e) Derive Boolean algebra expressions for each of the inputs to the flip-flops.
(f) Draw the synchronous counter circuit incorporating the J and K input values

obtained from the above steps.
We will take up a specific case to illustrate the above procedure.

7.4.12.1 Mod-3 Synchronous Counter
We have implemented a Mod-3 synchronous counter as described in Sec. 7.4.11.1. We will

implement the same counter by the procedure described here. We will follow the truth table
given in Table 7.7. For your convenience the excitation table for JK flip-flops is reproduced here.

Table 7.10 Excitation table for JK flip-flop

Present state Next state J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

We now prepare a counter design table listing the two flip-flops and their states and also
the four inputs to the two flip-flops as in table 7.11.

Table 7.11 Counter design table

Counter state Flip-flop inputs

A B A B

JA KA JB KB

0 0 1 X 0 X
1 0 X 1 1 X
0 1 0 X X 1
0 0

The table shows that if the counter is in the state A = 0, B = 0 and a clock pulse is
applied, the counter is required to step up to A = 1, B = 0. When the counter is in the state
A = 1, B = 0 and a clock pulse is applied, the counter has to step up to A = 0, B = 1. Lastly
when another clock pulse is applied the counter has to reset.

From the excitation table for JK flip-flops we can determine the states of the J and K
inputs, so that the counter steps up as required. For instance for the A flip-flop to step up
from 0 to 1, JA should be 1 and KA should be X. Similarly the J and K input values of both
the flip-flops for the remaining counter states have been worked out as shown in the table.

The next step is to derive boolean algebra expressions for each of the inputs to the flip-
flops. In the above exercise, our effort was to generate flip-flop inputs in a given row, so that

Shift Registers and Counters 301

when the counter is in the state in that row, the inputs will take on the listed values, so that
the next clock pulse will cause the counter to step up to the counter state in the row below.

We now form boolean algebra expressions from this table for the JA, KA, JB and KB
inputs to the flip-flops and simplify these expressions using Karnaugh maps. Expressions for
these inputs have been entered in Karanaugh maps in Fig. 7.46 (a), (b), (c) and (d). The
simplified expressions obtained for the inputs are also indicated under the maps.

The counter circuit when drawn up with the following resultant data will be the same
as worked out before in Fig. 7.40.

JA = B
KA = 1
JB = A
KB = 1

1

0

0

2

A 0

X

1

X

3

A 1

0 1

X

0

X

2

A 0

1

1

X

3

A 1

0 1

()
M ap fo r J

J = B

a
A

A

()
M ap fo r K

K = 1

b
A

A

X

0

X

2

A 0

1

1

X

3

A 1

0 1

X

0

1

2

A 0

X

1

X

3

A 1

0 1

()
M ap fo r J

J = A

c
B

B

()
M ap fo r K

K = 1

d
B

B

B B B B

Fig. 7.46 (a), (b), (c) and (d)

7.4.12.2 Mod-5 Counter (Synchronous)
The Mod-5 counter we are going to implement will be a synchronous counter, but it will have

the same counter states as given earlier in Table 7.8. The counter design table for this counter
lists the three flip-flops and their states as also the six inputs for the three flip-flops. The flip-flop
inputs required to step up the counter from the present to the next state have been worked out
with the help of the excitation table (Table 7.10). This listing has been shown in Table 7.12.

302 Switching Theory

1

0

A 0

A 1

BC
00

() M ap fo r J
J = C

a A

A

0

4

X

6

1

2

X

1

X

5

X

7

X

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() M ap fo r K
K = 1

b A

A

X

4

X

6

X

2

1

1

X

5

X

7

1

3

BC
01

BC
11

BC
10

0

0

A 0

A 1

BC
00

() M ap for J
J = A

c B

B

0

4

X

6

X

2

1

1

X

5

X

7

X

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() M ap fo r K
K = A

d B

B

X

4

X

6

0

2

X

1

X

5

X

7

1

3

BC
01

BC
11

BC
10

0

0

A 0

A 1

BC
00

() M ap fo r J
J = AB

e C

C

X

4

X

6

0

2

0

1

X

5

X

7

1

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() M ap fo r K
K = 1

f C

C

1

4

X

6

X

2

X

1

X

5

X

7

X

3

BC
01

BC
11

BC
10

Fig. 7.47

A

A

K A

JA

C

C

K C

JC

1

C lock

A
B

B

B

K B

JB

C

CLK CLK CLK

1

Fig. 7.48 Synchronous Mod-5 counter

Shift Registers and Counters 303

Table 7.12 Counter design table for Mod-5 counter

Input pulse Counter states Flip-flop inputs

count A B C JA KA JB KB JC KC

0 0 0 0 1 X 0 X 0 X

1 1 0 0 X 1 1 X 0 X

2 0 1 0 1 X X 0 0 X

3 1 1 0 X 1 X 1 1 X

4 0 0 1 0 X 0 X X 1

5 (0) 0 0 0

The flip-flop inputs have been determined with the help of the excitation table. Table
7.10. Some examples follow:

A flip-flop
The initial state is 0. It changes to 1 after the clock pulse. Therefore JA should be 1 and

KA may be 0 or 1 (that is X).

B flip-flop
The initial state is 0 and it remains unchanged after the clock pulse. Therefore JB should

be 0 and KB may be 0 or 1 (that is X).

C flip-flop
The state remains unchanged. Therefore JC should be 0 to KB should by X.
The flip-flop input values are entered in Karnaugh maps Fig. 7.47 [(a), (b), (c), (d), (e) and

(f)] and a boolean expression is formed for the inputs to the three flip-flops and then each
expression is simplified. As all the counter states have not been utilized, Xs (don’t) are entered
to denote un-utilized states. The simplified expressions for each input have been shown under
each map. Finally, these minimal expressions for the flip-flop inputs are used to draw a logic
diagram for the counter, which is given in Fig. 7.48.

7.4.12.3 Mod-6 Counter (Synchronous)
The desired counter states and the JK inputs required for counter flip-flops are given in

the counter design table (Table 7.13).

Table 7.13 Counter design table for Mod-6 counter

Input pulse Counter states Flip-flop inputs

count A B C JA KA JB KB JC KC

0 0 0 0 1 X 0 X 0 X
1 1 0 0 X 1 1 X 0 X
2 0 1 0 1 X X 0 0 X
3 1 1 0 X 1 X 1 1 X
4 0 0 1 1 X 0 X X 0
5 1 0 1 X 1 0 X X 1

6 (0) 0 0 0

304 Switching Theory

As before, the JK inputs required for this have been determined with the help of the
excitation table, (Table 7.10). These input values have been entered in Karnaugh maps
Fig. 7.49 and a boolean expression is formed for the inputs to the three flip-flops and then
each expression is simplified. Xs have been entered in those counter states which have
not been utilized. The simplified expressions for each input have been shown under each
map and finally a logic diagram based on these expressions has been drawn, as given in
Fig. 7.50.

1

0

A 0

A 1

BC
00

() M ap fo r J
J = 1

a A

A

1

4

X

6

1

2

X

1

X

5

X

7

X

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() M ap fo r K
K = 1

b A

A

X

4

X

6

X

2

1

1

1

5

X

7

1

3

BC
01

BC
11

BC
10

0

0

A 0

A 1

BC
00

() M ap for J
J = A C

c B

B

0

4

X

6

X

2

1

1

0

5

X

7

X

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() M ap fo r K
K = A

d B

B

X

4

X

6

0

2

X

1

X

5

X

7

1

3

BC
01

BC
11

BC
10

0

0

A 0

A 1

BC
00

() M ap fo r J
J = AB

e C

C

X

4

X

6

0

2

0

1

X

5

X

7

1

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() M ap fo r K
K = A

f C

C

0

4

X

6

X

2

X

1

1

5

X

7

X

3

BC
01

BC
11

BC
10

Fig. 7.49

Shift Registers and Counters 305

Fig. 7.50 Synchromous Mod-6 counter.

7.4.13 Lockout
The mod-6 counter we have just discussed utilizes only six out the total number of

eight states available in a counter having three flip-flops. The state diagram for the mod-
6 counter given in Fig. 7.51, shows the states which have been utilized and also states
011 and 111 which have not been utilized. The counter may enter one of the unused states
and may keep shuttling between the unused states and not come out of this situation.
This condition may develop because of external noise, which may affect states of the flip-
flops. If a counter has unused states with this characteristic, it is said to suffer from
lockout.

111

000
100

010

110

001
101

011

Unused
Sta tes

Fig. 7.51 State diagram for Mod-6 counter.

The lockout situation can be avoided by so arranging the circuit that whenever the
counter happens to be in an unused state, it reverts to one of the used states. We will
redesign the mod-6 counter so that whenever it is in state 0 1 1 or 1 1 1, the counter
swithces back to the starting point 0 0 0. You will notice from Fig. 7.49 that Js and Ks were
marked X in squares corresponding to the unused states. We will now assign values for Js
and Ks for the unused states, so that the counter reverts to state 0 0 0. This has been done
in Table 7.14.

306 Switching Theory

Table 7.14

 Counter states Flip-flop inputs

A B C JA KA JB KB JC KC
0 1 1 0 X X 1 X 1
1 1 1 X 1 X 1 X 1
0 0 0

These values of Js and Ks have been entered in K-maps for those counter states where
Xs had been entered previously. K-maps for the revised values of Js and Ks are given in Fig.
7.52. Boolean expressions are formed for the inputs to the three flip-flops and the expressions
so obtained are simplified. The expressions for each input have been shown under each map
and the logic diagram for the improved mod-6 counter is given in Fig. 7.53.

1

0

A 0

A 1

BC
00

() M ap fo r J
 J = B + BC

a A

A

1

4

0

6

1

2

X

1

X

5

X

7

X

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() M ap fo r K
K = 1

b A

A

X

4

X

6

X

2

1

1

1

5

1

7

1

3

BC
01

BC
11

BC
10

0

0

A 0

A 1

BC
00

() M ap for J
J = A C

c B

B

0

4

X

6

X

2

1

1

0

5

X

7

X

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() M ap fo r K
 K = A +C = AC

d B

B

X

4

1

6

0

2

X

1

X

5

1

7

1

3

BC
01

BC
11

BC
10

0

0

A 0

A 1

BC
00

() M ap fo r J
J = AB

e C

C

X

4

X

6

0

2

0

1

X

5

X

7

1

3

BC
01

BC
11

BC
10

X

0

A 0

A 1

BC
00

() M ap fo r K
 K = A + B = AB

f C

C

0

4

1

6

X

2

X

1

1

5

1

7

X

3

BC
01

BC
11

BC
10

Fig. 7.52

Shift Registers and Counters 307

Fig. 7.53 Mod-6 counter which will reset when it happens to reach an unutilized state

7.4.14 MSI Counter IC 7490 A
Of the many TTL MSI decade counters, IC 7490 A is most widely used for counting in

the standard 8421 BCD code. The logic diagram for this counter is given in Fig. 7.54 and its
pin connections and logic symbol are given in Fig. 7.55 and 7.56 respectively.

You will notice from Fig. 7.54 that it has three JK flip-flops A, B and C and, although
the D flip-flop is an RS flip-flop, it functions like a JK flip-flop, since its normal output is
connected to the R input. If you refer to Fig. 7.42, which shows a mod-5 counter, you will
notice that the B, C and D flip-flops in IC 7490 A also form a similar mod-5 counter. Also notice
that output QA pin 12, of flip-flop A, which functions as a mod-2 counter, is not internally
connected. It has to be externally connected to input B (pin 1) to enable it to function as a
mod 2 × 5 or decade counter, when the input clock is applied at A (pin 14). It basically counts
from binary 0000 to 1001 and back to 0000.

To reset the counter, gate 1 is provided with two inputs MR1 and MR2, any one of which
will reset the counter with a high input. This makes it possible to reset the counter from any
one of two sources. Normally both inputs are tied together. MS1 and MS2, inputs to gate 2
are used to preset the counter to binary 1001 (decimal 9) by taking any one or both inputs
to gate 2 high. Normally both inputs are tied together. It is worth noting that, although this
is an asynchronous counter, it has a count frequency of approximately 32 MHz, and therefore
it finds wide application in frequency counters.

As you will see later, this counter also finds application as a modulo counter and it can
be used to divide the input frequency by 5, 6, 7 etc.

Table 7.15 Bi-quinary (5 × 2) sequence

 Output

QA QD QC QB

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

1 0 0 0

308 Switching Theory

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

Fig. 7.54 Logic diagram for counter IC 7490 A

Fig. 7.55 Pin connections for counter IC 7490 A

12
9
8

11

Q A
Q B
QC
QD

14

1

6
7

2
3

CP 0

CP 1

M S1
M S2

M R 1
M R 2

7490 A

Fig. 7.56 Logic symbol for counter IC 7490 A

Shift Registers and Counters 309

When this counter is used as a decade counter in the 2 × 5 configuration, QA (Pin 12)
is connected to pin 1 as in Fig. 7.57 and clock pulse are applied at pin 14. The output at QD
(Pin 11) will be low from a count of 0000 to 1110. The output at pin 11 will be high at counts
of 0001 and 1001 or decimal 9. At the next 1 to 0 transition of the clock pulse, the counter
will be reset and at the same time, if there is another counter in cascade as shown in
Fig. 7.58 its count will go up from 0000 to 1000 or decimal 1 on the 1 → 0 transition of the
same clock pulse. In other words, when the first counter has reached its maximum count of
9, the next pulse will reset it to 0 and the second counter will be stepped up from 0000 to
1000 and the two put together will show a count of 10 and a maximum count of 99.

The waveform for this counter, connected in the 2 × 5 configuration, will be as shown
in Fig. 7.43 and the counting sequence will be as shown in Table 7.9, which is in pure binary
sequence. If you look at the D output in Fig. 7.43, you will observe that it is not symmetrical.
If this counter is connected in the 5 × 2 mode, the output will have a symmetrical shape.

To operate this counter in the 5 × 2 mode, pin 14 is connected to QD (pin 11) and the
clock signal is applied at pin 1 as has been shown in Fig. 7.59. The output will now follow
the bi-quinary (5 × 2) sequence as show in Table 7.15, which is different from the pure binary
sequence in Table 7.9. Bi-quinary (5 × 2) sequence waveforms are shown in Fig. 7.60. The
counter will show a count of 0001 after the first clock pulse and the 10th pulse will reset the
counter to 0000 on its trailing edge, which will also increment the next counter if another
counter is connected in cascade. Two counters connected in cascade in the 5 × 2 configuration
are shown in Fig. 7.61.

Fig. 7.57 IC 7490 A connected as a decade counter (2 × 5) configuration

For two decade counters connected in cascade, there will be only one output pulse for
every ten input clock pulses, which shows that the frequency of the train of input pulses is
scaled down by a factor of 10. In other words if the input frequency is f, the output frequency
will be f/10.

In digital instruments, it is often necessary to divide a frequency by a given factor and
for this function scalers are used. Scalers will accept input pulses and output a single pulse
at the required interval. A single decade scaler will divide a train of pulses by 10 and four
decade scalers will divide the input frequency by 104.

310 Switching Theory

12
9
8

11

Q A
Q B
Q C
Q D

14

1

6
7

2
3

CP 0

CP1

M S1
M S2

M R1
M R2

7490 A

C lock
Inpu t

LSB

M SB

LSD

12
9
8

11

Q A
Q B
Q C
Q D

14

1

6
7

2
3

CP1

M S1
M S2

M R 1
M R 2

7490 A

M SD

Fig. 7.58 IC 7490 A connected as a two-decade counter (00–99)

12
9
8

11

Q A
Q B
QC
QD

14

1

6
7

2
3

CP 0

CP 1

M S1
M S2

M R 1
M R 2

7490 A

C lock
Inpu t

LSB

M SB

Fig. 7.59 IC 7490 A connected as a decimal scaler (5 × 2) configuration

12
9
8

11

Q A
Q B
Q C
Q D

14

1

6
7

2
3

CP 1

M S1
M S2

M R1
M R2

7490 A

O utpu t f/10

CP0
C lock
Inpu t (f)

Fig. 7.60 Waveforms in bi-quinary (5 × 2) sequence

Shift Registers and Counters 311

7.4.14.1 Modulo-N counters based on IC 7490 A
IC 7490 A has found several applications in circuits requiring frequency division. Some

of the circuits in common use based on this IC have been discussed here.

Modulo-5 Counter
When used as a Mod-5 counter, connections are to be made as shown in Fig. 7.62. The

count sequence for this counter is as given in Table 7.16.

Fig. 7.61 Divide by 100 scaler

Table 7.16 Count sequence for Mod-5 counter
 Input pulse count Counter output

QD QC QB

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 (0) 0 0 0

12
9
8

11

Q A
Q B
Q C
Q D

14

1

6
7

2
3

CP0

CP1

M S1
M S2

M R1
M R2

7490 A

C lock
Inpu t

LSB

M SB

2 0

2 1

2 2

Fig. 7.62 Mod-5 counter using IC 7490 A

312 Switching Theory

Modulo-6 Counter
IC 7490 A is to be connected as in Fig. 7.63 to obtain a Mod-6 counter. Its counter

sequence is given in Table 7.17.

Table 7.17 Count sequence for Mod-6 counter

Input pulse Counter output

count QD QC QB QA

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 (0) 0 1 1 0

12
9
8

11

Q A
Q B
QC
QD

14

1

6
7

2
3

CP 0

CP 1

M S1
M S2

M R 1
M R 2

7490 A

C lock
Inpu t

LSB

M SB

Fig. 7.63 Mod-6 counter using IC 7490 A

As the counter is required to reset when the count reaches 6, that is 0 1 1 0 when both
QB and QC outputs are high, these two outputs are connected to the reset inputs so that the
counter resets at this count. Thus the counter sequences from 0000 to 0101 and thereafter
it resets and the cycle is repeated.

Modulo-9 Counter
When used as a Mod-9 counter, this IC is required to be connected as shown in Fig. 7.64.

The counter is required to reset when the count reaches 1001. Therefore pins 11 and 12 are
connected to pins 3 and 2. Also notice that pin 12 is connected to pin 1 and clock input is
applied to pin 14, so that it looks like a decade counter which resets when the count reaches
decimal 9.

Shift Registers and Counters 313

12
9
8

11

Q A
Q B
QC
QD

14

1

6
7

2
3

CP 0

CP 1

M S1
M S2

M R 1
M R 2

7490 A

C lock
Inpu t

LSB

M SB

Fig. 7.64 Mod-9 counter using IC 7490A

7.4.15 MSI Counter IC 7492A
Counter IC 7492 A, which is very similar to IC 7490 A, also finds considerable application

in circuits requiring frequency division. A logic diagram of this IC is given in Fig. 7.65 and
its pin connections and logic symbol are given in Fig. 7.66 and 7.67 respectively.

In this counter flip-flops B, C, and D are connected in the 3 × 2 configuration and,
therefore, if input is applied at pin 1, and outputs are taken from QB, QC and QD, this counter
will function as mod-6 counter.

If output QA, pin 12, is connected to input pin 1, this IC functions as a 2 × 3 × 2 or mod-
12 counter. Table 7.18 gives the truth table for this IC when QA, pin 12, is connected to input,
pin 1. Some frequency division circuits based on this IC have been considered here.

Table 7.18

Input pulse Counter output

count QD QC QB QA

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 1 0 0 0

7 1 0 0 1

8 1 0 1 0

9 1 0 1 1

10 1 1 0 0

11 1 1 0 1

12 0 0 0 0

314 Switching Theory

Fig. 7.65 Logic diagram for IC 7492 A

Fig. 7.66 Pin connections for IC 7492 A

12
11

9
8

Q A
Q B
QC
QD

14

1

6
7

CP 0

CP 1

M R 1
M R 2

7492 A

Fig. 7.67 Logic symbol for IC 7492 A

Shift Registers and Counters 315

7.4.15.1 Divide-by-N circuits based on IC 7492 A
This IC like 7490 A is also a useful tool for circuits which require frequency division.

Some circuits based on this IC have been considered here.

Divide-by-6-Circuit
As has been mentioned earlier, flip-flops B, C and D in this IC are connected in the

3 × 2 configuration. To operate as a divide-by-6, circuit input is applied at pin 1 and output
is taken from QD, pin 8, as shown in Fig. 7.68.

12
11

9
8

Q A
Q B
Q C
Q D

14

1

6
7

CP 0

CP 1

M R 1
M R 2

7492 A

C lock
Inpu t (f)

O uput f/6

Fig. 7.68 Divide-by-6 circuit

Divide-by-9 Circuit
Fig. 7.68 gives the diagram for a circuit using IC 7492 A, which divides the input

frequency by 9. Input is applied at pin 1 and, when the input pulse count reaches decimal 9,
outputs QD and QA go high, and as they are connected to reset inputs, pins 7 and 6, the
counter is reset. Output is taken from QA, pin 12.

12
11

9
8

Q A
Q B
Q C
Q D

14

1

6
7

CP 0

CP 1

M R 1
M R 2

7492 A

C lock
Inpu t (f)

O uput f/9

Fig. 7.69 Divide-by-9 circuit

316 Switching Theory

Divide-by-12-Circuit
A circuit based on IC 7492 A which will divide the input frequency by 12 is given in Fig.

7.70. Clock input is applied at pin 1 and the output is taken from QD, pin 12. When the circuit
reaches pulse count 12, it is automatically reset and it repeats the cycle all over again.

Fig. 7.70 Divide-by-12 circuit

7.4.16 Ring Counter
Ring counters provide a sequence of equally spaced timing pulses and, therefore, find

considerable application in logic circuits which require such pulses for setting in motion a
series of operations in a predetermined sequence at precise time intervals. Ring counters are
a variation of shift registers.

The ring counter is the simplest form of shift register counter. In such a counter the flip-
flops are coupled as in a shift register and the last flip-flop is coupled back to the first, which
gives the array of flip-flops the shape of a ring as shown in Fig. 7.71. In particular two
features of this circuit should be noted.

(1) The QD and QD outputs of the D flip-flop are connected respectively, to the J and
K inputs of flip-flop A.

(2) The preset input of flip-flop A is connected to the reset inputs of flip-flops B, C and D.

Fig. 7.71 Ring Counter

Shift Registers and Counters 317

If we place only one of the flip-flops in the set state and the others in the reset state
and then apply clock pulses, the logic 1 will advance by one flip-flop around the ring for each
clock pulse and the logic 1 will return to the original flip-flop after exactly four clock pulses,
as there are only four flip-flops in the ring. The ring counter does not require any decoder,
as we can determine the pulse count by noting the position of the flip-flop, which is set. The
total cycle length of the ring is equal to the number of flip-flop stages in the counter. The
ring counter has the advantage that it is extremely fast and requires no gates for decoding
the count. However it is uneconomical in the number of flip-flops. Whereas a mod-8 counter
will require four flip-flops, a mod-8 ring counter will require eight flip-flops.

The ring counter is ideally suited for applications where each count has to be recognized
to perform some logical operation.

We can now consider how the modified shift register shown in Fig. 4.78 operates. When
the preset is taken low momentarily, flip-flop A sets and all other flip-flops are reset. The
counter output will now be as follows:

QA QB QC QD

1 0 0 0

At the negative clock edge of the 1st pulse, flip-flop A resets QA becomes 0, QB becomes
1 and QC and QD remain 0. The counter output is now as follows:

QA QB QC QD

1 0 0 0

After the 4th clock pulse, the counter output will be as follows:

QA QB QC QD

1 0 0 0

You will notice that this was the position at the beginning of the operation, when the
preset input was activated. A single logic 1 has travelled round the counter shifting one flip-
flop position at a time and has returned to flip-flop A. The states of the flip-flops have been
summarized in Table 7.19.

Table 7.19 Ring counter states

States Counter output

QA QB QC QD

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 1 0 0 0

The relevant waveforms are shown in Fig. 7.72.

If preset and clear inputs are not available, it is necessary to provide the required gating,
so that the counter starts from the initial state. This can be simply arranged by using a NOR
gate as shown in Fig. 7.73.

318 Switching Theory

1 2 3 4 5

1 0 0 0 1

0 1 0 0 0

State

Q A

Q B

0 0 1 0 0
Q C

0 1 2 3 0

0 0 0 1 0
Q D

Shift
Pu lses

Fig. 7.72

The NOR gate ensures that the input to flip-flop A will be 0 if any of the outputs of A,
B, C flip-flops is a logic 1. Now, on the application of clock pulses 0s will be moved right into
the counter until all A, B and C flip-flops are reset. When this happens, a logic 1 will be shifted
into the counter, and as this 1 is shifted right through the A, B and C flip-flops it will be
preceded by three more 0s, which will again be followed by a logic 1 from the NOR gate when
flip-flops, A, B and C are all reset.

Fig. 7.73 Ring counter with correcting circuit

7.4.17 Johnson Counter
The ring counter can be modified to effect an economy in the number of flip-flops used

to implement a ring counter. In modified form it is known as a switchtail ring counter or
Johnson counter. The modified ring counter can be implemented with only half the number
of flip-flops.

In the ring counter circuit shown in Fig. 7.71, the QD and QD outputs of the D-flip-flop
were connected respectively, to the J and K inputs of flip-flop A. In the Johnson counter, the

Shift Registers and Counters 319

outputs of the last flip-flop are crossed over and then connected to the J and K inputs of the
first flip-flop. Fig. 7.74 shows a Johnson counter using four JK flip-flops in the shift register
configuration, shown QD and QD outputs connected respectively, to the K and J inputs of flip-
flop A. Because of this cross-connection, the Johnson counter is sometimes referred to as a
twisted ring counter.

Fig. 7.74 Four-stage Johnson counter

To enable the counter to function according to the desired sequence, it is necessary to
reset all the flip-flops. Initially therefore, QD is 0 and QA is 1, which makes the J input of
flip-flop A logic 1. We will now study how shift pulses alter the counter output.

(1) Since the J input of flip-flop A is 1, the 1st shift pulse sets the A flip-flop and the
other flip-flops remain reset as the J inputs of these flip-flops are 0 and K inputs
are 1.

(2) When the 2nd shift pulse is applied, since QD is still 1, flip-flop A remains set and
flip-flop B is set, while flip-flop C and D remain reset.

(3) During the 3rd shift pulse, flip-flop C also sets, while flip-flops A and B are already
set; but flip-flop D remains reset.

(4) During the 4th, pulse, flip-flop D also sets while flip-flops A, B and C are already set.

(5) During the 5th pulse as QD is 0, flip-flop A resets, while flip-flops B, C and D remain
set.

The entire sequence of states, which are 8 in all, is as shown in Table 7.20.

You will notice from Table 7.20 that Johnson counter with four flip-flops has eight valid
states. Since four flip-flops have been used, the total number of states is 16, out of which 8
are invalid, which have been listed in Table 7.21.

The valid states require decoding, which is different from normal decoding used for
standard pure binary count sequence. You will notice that state 1 is uniquely defined, when
the outputs of flip-flops A and D are low. Thus a 2-input AND gate with inputs as shown in
the table can decode state 1. State 2 is also fully defined by A high and B low. Similarly, the
other outputs can be decoded by the gates with inputs as shown in Table 7.20.

320 Switching Theory

Table 7.20

State QD QC QB QA Binary Output decoding

equivalent

1 0 0 0 0 0 AD
A
D

2 0 0 0 1 1 AB
A
B

3 0 0 1 1 3 BC
B
C

4 0 1 1 1 7 CD
C
D

5 1 1 1 1 15 AD
A
D

6 1 1 1 0 14 AB
A
B

7 1 1 0 0 12 BC
B
C

8 1 0 0 0 8 CD
C
D

Table 7.21 Invalid States

QD QC QB QA Binary
equivalent

0 1 0 0 4

1 0 0 1 9

0 0 1 0 2

0 1 0 1 5

1 0 1 1 11

0 1 1 0 6

1 1 0 1 13

1 0 1 0 10

In order to ensure that the counter counts in the prescribed sequence given in
Table 7.20, an initial reset pulse may be applied, which will reset all the flip-flops. If this is
not done, there is no surety that the counter will revert to the valid counting sequence. If
the counter should find itself in an unused state, it may continue to advance from one
disallowed state to another. The solution to the problem lies in applying extra feedback, so
that the counter reverts to the correct counting sequence. For this purpose, the self-correcting
circuit given in Fig. 7.76 may be used. The input to the AND gate is QA QB QC QD and thus
it decodes the word 1 0 0 1, which overrides the input, which is 0 and the counter produces
an output of 1 1 0 0, which is a part of the allowed counting sequence. From then onwards
the counter functions in the desired sequence.

Shift Registers and Counters 321

1 2 3 4 5 6 7 8 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 1 1 0 0 0 0 1 1 1

0 0 1 1 1 1 0 0 0 0 1 1

0 0 0 1 1 1 1 0 0 0 0 1

0 0 0 0 1 1 1 1 0 0 0 0

Sta te

Sh ift
Pu lse

Q A

Q B

Q C

Q D

Fig. 7.75 Waveforms for a 4-stage Johnson counter

Fig. 7.76 Self-starting and self-correcting Johnson counter

7.4.17.1 Five-stage Johnson Counter
While discussing the 4-stage Johnson counter, you must have observed that this counter

divides the clock frequency by 8. Therefore, a Johnson counter with n flip-flops will divide the
clock frequency by 2n or, in other words, there will be 2n discrete states. If we have five flip-
flops connected as a Johnson counter, we will have 10 discrete states. Consequently, we will
have a decade counter. However, it should be noted that this counter will have in all 32 states,
out of which the desired count sequence will utilize only 10 states and the remaining 22 will
have to be disallowed. As in the case of a four flip-flop Johnson counter, some form of feedback
will have to be incorporated, to disallow the illegal states. A self-correcting circuit like the one
shown in Fig. 7.76 may be used with this counter Table 7.22 shows the sequence of the ten
allowed states for this counter. The waveforms are shown in Fig. 7.77.

322 Switching Theory

Table 7.22

State E D C B A Output

decoding

1 0 0 0 0 0 A E

2 0 0 0 0 1 A B

3 0 0 0 1 1 B C

4 0 0 1 1 1 CD

5 0 1 1 1 1 D E

6 1 1 1 1 1 A E

7 1 1 1 1 0 A B

8 1 1 1 0 0 B C

9 1 1 0 0 0 CD

10 1 0 0 0 0 D E

For decoding the output of the 5-stage Johnson counter use 2-input AND gates. The
inputs to these gates have been indicated in Table 7.22.

Fig. 7.77 Waveform for a 5-stage Johnson counter

7.4.18 Ring Counter Applications
Ring counters find many applications as

(1) Frequency dividers
(2) Counters
(3) Code generators and
(4) Period and sequence generators

Shift Registers and Counters 323

Frequency dividers
If you look at the waveform Fig. 7.72 of the 4-stage ring counter shown in Fig. 7.71, you

will notice that the B flip-flop produces one output pulse for two input pulses, that is it divides
the frequency of the shift pulse by 2. Similarly, flip-flop C produces one output pulse for every
three input pulses, that is it divides the input frequency by 3, and flip-flop D divides the input
frequency by 4. If there are n flip-flops they will divide the shift pulse by n. Thus a shift
register connected as a ring counter can be used as a frequency divider.

Counters
A shift register, when connected as a ring counter, can also be used as a counter. For

instance, the flip-flop outputs of the ring counter in Fig. 7.71 also give an indication of the
number of pulses applied and, therefore counting requires no decoding.

Sequence generators
Sequence generators are circuits which generate a prescribed sequence of bits in

synchronism with a clock. By connecting the outputs of flip-flops in a ring counter to the logic
circuits whose operations are to be controlled according to a certain sequence, a ring counter
can perform a very useful function. Since ring counters are activated by fixed frequency
clocks, the timing intervals between the logic circuits to be controlled can be very precise.

This is of particular importance in computers where instructions have to be executed at
the right time and in the correct sequence.

7.4.18.1 Feedback Counters
The ring counters which we have considered so far have a cycle length which is the same

as the number of flip-flops in the counter. For instance, the ring counter in Fig. 7.71 has a
cycle length of 4. It is possible to design a ring counter which produces a longer cycle length
of 2n–1, where n is the number of flip-flops in the ring counter. The trick lies in decoding the
outputs of the shift register and feeding the decoded output back to the input. This technique
can be used to develop a wide variety of count sequences and output waveforms. To achieve
a cycle length of 2n – 1, an exclusive-OR gate may be used as the feedback element, which
provides a feedback term from an even number of stages to the first stage. Table 7.23
intended for counters up to 12 stages, shows the stages the outputs of which are to be fed
back to the first flip-flop in the chain.

Q

Q

K

J

FF 1

Q 1 Q 2 Q 4

CLK

Q 3
Preset

Q

Q

K

J

FF 2

Q

Q

K

J

FF 3

Q

Q

K

J

FF 4

PRE PRE PRE PRE

Fig. 7.78 Four-stage feedback counter

324 Switching Theory

This table can be used for designing counters of the type shown in Fig. 7.78, when the
feedback element consists of a single XOR gate. The count sequence for this 4-stage counter
is given in Table 7.24. When you refer to Table 7.23, you will notice that the feedback term
for a 4-stage counter using an XOR gate as the feedback element is F = (Q3 ⊕ Q4). The truth
table for an XOR gate reproduced below will enable you to determine the input to the first
stage in the counter.

 Input Output

A B F

0 0 0

0 1 1

1 0 1

1 1 0

Table 7.23 Feedback terms for counter design

No. of stage Feedback stage

2 Q1 Q2

3 Q2 Q3

4 Q3 Q4

5 Q3 Q5

6 Q5 Q6

7 Q6 Q7

8 Q4 Q5 Q6 Q8

9 Q5 Q9

10 Q7 Q10

11 Q9 Q11

12 Q6 Q8 Q11 Q12

In determining the counter states, all that is necessary is to determine the feedback
input to the first flip-flop and, since JK flip-flops have been used, the input to the first flip-
flop will be the same as the output of the XOR gate, which depends on the outputs of FF3
and FF4. Table 7.24 has been prepared on this basis.

It is important to note that the 0 state of count sequence has to be excluded by additional
gating or by using the preset input. If you refer to the first row of the table, you will observe
that both outputs Q3 to Q4 are 1 and therefore F = 0. Consequently, the input to the first
flip-flop is also 0, which will make its output on the first clock pulse 0. The outputs of FF2
and FF3 will remain unchanged on the first clock pulse. You can determine the outputs in
the remaining rows on this basis.

A close look at the table will show you that the output of FF2 resembles the output of
FF1, but it is delayed by one clock pulse from that of FF1. Similarly, the outputs of FF3 and
FF4 are also delayed by one clock pulse as compared to the outputs of the immediately
preceding flip-flops.

Shift Registers and Counters 325

Table 7.24 Count sequence for 4-stage feedback counter

Clock input Output

Q1 Q2 Q3 Q4

0 1 1 1 1

1 0 1 1 1

2 0 0 1 1

3 0 0 0 1

4 1 0 0 0

5 0 1 0 0

6 0 0 1 0

7 1 0 0 1

8 1 1 0 0

9 0 1 1 0

10 1 0 1 1

11 0 1 0 1

12 1 0 1 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

This procedure can be used for designing counters which are required to cycle through
a large number of states. For instance a counter which uses 8 flip-flops will cycle through
28 – 1 or 255 states. We have used only a single XOR gate as the feedback element, but the
feedback logic can be designed differently to sequence through any desired sequence or
waveform.

7.4.18.2 Sequence generators
Here we are concerned with pseudo-random sequence generators. They will be random

in the sense that the output generated will not cycle through the normal binary count. The
sequence is termed pseudo, as it is not random in the real sense, because it will sequence
through all the possible states once every 2n – 1 clock cycles. The random sequence generator
given in Fig. 7.79 has n stages and it will therefore sequence through 2n – 1 values before
it repeats the same sequence of values.

Let us consider the sequence 100110011001. The bit sequence in this number has a
length of 4 that is 1001, if you read it from the first bit on the left. You can also read the
sequence from the 2nd and 3rd bits on the left, when the bit patterns will appear to be 0011
and 0110. No matter how you read it, the bit length does not change, nor does the sequence
of bits change. You can describe the pattern of bits as 1001, 0011 or 0110.

We can now consider the structure of a sequence generator given in a simple form in
Fig. 7.79 using D-type flip-flops connected as in a shift register. The output of the flip-flops
are connected through a feedback decoder to the input of the first flip-flop. The output of the
decoder is a function of the flip-flop outputs connected to it and the decoder circuitry. We can
state this as follows :

F = f (Q1, Q2, Q3, Qn)

326 Switching Theory

Fig. 7.79 Basic structure of a sequence generator

The desired sequence of bits will appear at the output of each of the flip-flops, but the
output of each of the successive flip-flops will show a delay in the appearance of the sequence
by one clock interval over the one which precedes it.

The minimum number of flip-flops required to generate a sequence of length S is given
by

S = 2n – 1

Where n is the number of flip-flops in the chain.

However, if the minimum number of flip-flops is used, it is not possible to say off hand,
that it will be possible to generate a sequence of the required length; but for a given number
of flip-flops there is invariably one sequence which has the maximum length.

It is important that in the generation of a sequence no state should be repeated, as that
will put a limit on the number of states, because every state determines the development of
the future sequence. Besides, the all 0 state has to be excluded, as in this case the input to
the first flip-flop in the chain will be 0, which implies that the next state will also be 0, in
which case the sequence generator would stop functioning.

We will now consider the steps in the generation of the sequence 1001001 of seven bits.
The number of stages that will be required to generate this sequence can be determined as
follows:

S = 2n – 1

Since S = 7; n should be 3, that is three flip-flops will be required.

However, there is no guarantee that a 7-bit sequence can be generated in 3 stages. If
it is not possible, we can try to implement the sequence by using a 4-stage counter; but in
this particular case, as you will see, it will be possible to generate this sequence with three
stages. The basic arrangement for generating this sequence is shown in Fig. 7.80, which uses
three JK flip-flops. The outputs of FF2 and FF3 constitute the inputs to the logic decoder,
which in this case in an XOR gate. The output of the XOR gate, which constitutes the input
F to FFI can be stated as follows:

F = (Q2 ⊕ Q3)

You must have noticed that the outputs of FF2 to FF3 are one CLK pulse behind the
outputs of flip-flops immediately preceding them. After the first sequence of 7 states has been
completed, the sequence is repeated when the 8th (or 1st) CLK pulse arrives. Also observe

Shift Registers and Counters 327

that no output state has been repeated, which shows that it has been possible to implement
the sequence with only 3 flip-flops.

K

J

FF 1

Q 1 Q 2

C lock

Q 3
Present

K

J

FF 2

K

J

FF 3

PRE PRE PRE

F = (Q + Q)2 3

Fig. 7.80 Three-stage sequence generator

When a larger or smaller number of flip-flops is used, the input to the first flip-flop can
be worked out on the same basis; but the feedback logic will be different as shown in
Table 7.25 for sequence generators using up to 8 stages. For instance for a generator using
four flip-flops, F will be as follows:

F = (Q3 ⊕ Q4)

Table 7.25 Logic design table for shift register
sequences of maximum length (S = 2n –1)

Clock Feedback state

n

2 Q1 Q2

3 Q2 Q3

4 Q3 Q4

5 Q3 Q5

6 Q5 Q6

7 Q6 Q7

8 Q2 Q3 Q4 Q8

The implementation of sequence 1001011 has been presented in Table 7.26.

The count sequence has been developed as follows: You will notice from the table that
at the commencement of the operation, the counter is set as shown against CLK 1. Before
CLK 2 is applied at FF1 input, the F input to it should be 0, so that its output changes from
1 to 0. Since Q2 and Q3 are both 1, the F input to FF1 will be 0. This condition is, therefore,
satisfied. The second clock pulse, therefore, changes Q1 from 1 to 0 and Q2 and Q3 remain
on 1 as the inputs to these flip-flops are 1. Since both Q2 and Q3 are again 1, the F input
to FF1, before the arrival of the 3rd clock pulse will again be 0. Therefore, on the arrival of
CLK pulse 3, the output of Q1 will remain 0, as the input to it is 0. On the same CLK pulse
Q2 will change from 1 to 0 as the input to it is 0 and Q3 will remain on 1 as the input to
Q3 is still 1. Successive changes in the outputs have been worked out on this basis.

328 Switching Theory

Table 7.26

Clock interval Flip-flop outputs Input to FF1

CLK F = (Q2 ⊕ Q3)

Q1 Q2 Q3

1 1 1 1 0

2 0 1 1 0

3 0 0 1 1

4 1 0 0 0

5 0 1 0 1

6 1 0 1 1

7 1 1 0 1

.

.

.

.

1 1 1 1 1

7.5 EXERCISES
1. Can one store decimal number 12 in an 8-bit shift register.

2. The number stored in a 4-bit binary up-counter is 0101. What will be state of the
counter after the following clock pulses ?

(a) 3rd clock pulse

(b) 5th clock pulse

(c) 8th clock pulse

(d) 12th clock pulse

3. In a 4-bit ripple up-counter how many clock pulses will you apply, starting from
state 0 0 0 0, so that the counter outputs are as follows ?

(a) 0 0 1 0

(b) 0 1 1 1

(c) 1 0 0 1

(d) 1 1 1 0

4. Draw the logic diagram for a binary up-counter using four JK flip-flops and draw the
truth table and the output waveforms.

5. Connect four edge-triggered D-type flip-flops to make an asynchronous up-counter.

6. How many JK flip-flops will you require to make the following modulo counters ?

(a) Mod-4 (b) Mod-6

(c) Mod-9 (d) Mod-11

7. What will be maximum count capability of a counter having 12 JK flip-flops ?

Shift Registers and Counters 329

8. How many flip-flops will you require to attain a count capability of 8500 ?

9. An asynchronous counter has four flip-flops and the propagation delay of each flip-
flop is 20 ns. Calculate the maximum counting speed of the counter.

10. A synchronous counter has four flip-flops and the propagation delay of each is 20 ns.
What is its maximum counting speed ?

11. By how much will a ripple down-counter having three flip-flops divide the input
frequency ?

12. Draw a logic diagram, truth table and output waveforms for a ripple down-counter
with four flip-flops.

13. What will be the output states of a four flip-flop binary down-counter, after the
following input clock pulses, if the initial state of the counter was 1111 ?

(a) 4 (b) 7 (c) 9 (d) 14

14. Draw the logic diagram of a presettable down counter with a maximum preset
capability of 7.

15. What will be the modulus of IC 74193 in the up-counting mode, if the numbers
preset in the counter are as follows ?

(a) Decimal 5 (b) Decimal 7

(c) Decimal 9 (d) Decimal 12

16. What will be the modulus of IC 74193 in the down-counting mode, when the binary
numbers preset in the counter are the same as in Problem 15 ?

17. A 74193 up-counter starts counting up from binary number 1 0 0 0. What will be
the state of the counter after the 8th clock pulse ?

18. Draw the logic diagram of a Mod-6 counter using the counter reset method. Write
its truth table and draw the output waveforms.

19. Show how you will connect two ICs 74193 to build an 8-bit up-down counter.

20. What is the maximum counting capacity of a chain of five BCD counters ?

21. A BCD counter is required to have the following states. After how many clock pulses
will these states be reached, if the counter was initially reset ?

(a) 0 0 1 0

(b) 0 1 0 0

(c) 0 1 1 0

(d) 1 0 0 1

22. Connect two ICs 74193 to make a moduluo-20 divider circuit.

23. Design a mod-10 (Decade) synchronous counter using JK flip-flops.

24. Draw decoding gates for the decade counter in Fig. 4.51.

25. Draw decoding gates for the counter of Fig. 4.49.

26. Redesign the synchronous mod-5 counter circuit discussed in Sec 4.8.12.2 so that
whenever the counter reaches the unutilized state 1 0 1, 0 1 1 and 1 1 1 the counter
is reset.

27. Design a Mod-7 counter using IC 7490 A.

330 Switching Theory

28. Design a divide-by 120 counter using ICs 7490 A and 7492 A.

29. Design a correcting circuit for a 4-stage ring counter using a NAND gate instead
of a NOR gate as used in Fig. 4.80.

30. Determine the maximal length sequence, which can be generated using four JK flip-
flops and draw the sequence generated by the first flip-flop in the chain.

31. Draw waveforms to illustrate how a serial binary number 1011 is loaded into a shift
register.

32. A binary number is to be divided by 64. By how many positions will you shift the
number and in what direction.

33. Describe the working of shift register with PISO/SIPO operation.

34. Design a mod-5 synchronous counter having the states 011, 100, 101, 110, 111
respectively. Obtain a minimal cost design with J-K F/F.

35. Design a shift register counter to generate a sequence length of 8 having self-start
feature.

8
CHAPTER

331

ASYNCHRONOUS SEQUENTIAL LOGIC

8.0 INTRODUCTION
Much of today’s logic design is based on two major assumptions: all signals are binary,

and time is discrete. Both of these assumptions are made in order to simplify logic design.
By assuming binary values on signals, simple Boolean logic can be used to describe and
manipulate logic constructs. By assuming time is discrete, hazards and feedback can largely
be ignored. However, as with many simplifying assumptions, a system that can operate
without these assumptions has the potential to generate better results.

Asynchronous circuits keep the assumption that signals are binary, but remove the
assumption that time is discrete. This has several possible benefits:

No Clock Skew
Clock skew is the difference in arrival times of the clock signal at different parts of the

circuit. Since asynchronous circuits by definition have no globally distributed clock, there is
no need to worry about clock skew. In contrast, synchronous systems often slow down their
circuits to accommodate the skew. As feature sizes decrease, clock skew becomes a much
greater concern.

Lower Power
Standard synchronous circuits have to toggle clock lines, and possibly precharge and

discharge signals, in portions of a circuit unused in the current computation. For example,
even though a floating point unit on a processor might not be used in a given instruction
stream, the unit still must be operated by the clock. Although asynchronous circuits often
require more transitions on the computation path than synchronous circuits, they generally
have transitions only in areas involved in the current computation.

Note: that there are techniques being used in synchronous designs to address this issue
as well.

Average-Case Instead of Worst-Case Performance
Synchronous circuits must wait until all possible computations have completed before

latching the results, yielding worst-case performance. Many asynchronous systems sense
when a computation has completed, allowing them to exhibit average-case performance. For
circuits such as ripple-carry adders where the worst-case delay is significantly worse than the
average-case delay, this can result in a substantial savings.

332 Switching Theory

Easing of Global Timing Issues
In systems such as a synchronous microprocessor, the system clock, and thus system

performance, is dictated by the slowest (critical) path. Thus, most portions of a circuit must
be carefully optimized to achieve the highest clock rate, including rarely used portions of the
system. Since many asynchronous systems operate at the speed of the circuit path currently
in operation, rarely used portions of the circuit can be left unoptimized without adversely
affecting system performance.

Better Technology Migration Potential
Integrated circuits will often be implemented in several different technologies during

their lifetime. Early systems may be implemented with gate arrays, while later production
runs may migrate to semi-custom or custom ICs. Greater performance for synchronous
systems can often only be achieved by migrating all system components to a new technology,
since again the overall system performance is based on the longest path. In many asynchronous
systems, migration of only the more critical system components can improve system performance
on average, since performance is dependent on only the currently active path. Also, since many
asynchronous systems sense computation completion, components with different delays may
often be substituted into a system without altering other elements or structures.

Automatic Adaptation to Physical Properties
The delay through a circuit can change with variations in fabrication, temperature, and

power-supply voltage. Synchronous circuits must assume that the worst possible combination
of factors is present and clock the system accordingly. Many asynchronous circuits sense
computation completion, and will run as quickly as the current physical properties allow.

Robust Mutual Exclusion and External Input Handling
Elements that guarantee correct mutual exclusion of independent signals and

synchronization of external signals to a clock are subject to metastability. A metastable state
is an unstable equilibrium state, such as a pair of cross-coupled CMOS inverters at 2.5V,
which a system can remain in for an unbounded amount of time. Synchronous circuits require
all elements to exhibit bounded response time. Thus, there is some chance that mutual
exclusion circuits will fail in a synchronous system. Most asynchronous systems can wait an
arbitrarily long time for such an element to complete, allowing robust mutual exclusion. Also,
since there is no clock with which signals must be synchronized, asynchronous circuits more
gracefully accommodate inputs from the outside world, which are by nature asynchronous.

With all of the potential advantages of asynchronous circuits, one might wonder why
synchronous systems predominate. The reason is that asynchronous circuits have several
problems as well. Primarily, asynchronous circuits are more difficult to design in an ad hoc
fashion than synchronous circuits. In a synchronous system, a designer can simply define the
combinational logic necessary to compute the given functions, and surround it with latches.
By setting the clock rate to a long enough period, all worries about hazards (undesired signal
transitions) and the dynamic state of the circuit are removed. In contrast, designers of
asynchronous systems must pay a great deal of attention to the dynamic state of the circuit.
Hazards must also be removed from the circuit, or not introduced in the first place, to avoid
incorrect results. The ordering of operations, which was fixed by the placement of latches in
a synchronous system, must be carefully ensured by the asynchronous control logic. For
complex systems, these issues become too difficult to handle by hand.

Asynchronous Sequential Logic 333

Finally, even though most of the advantages of asynchronous circuits are towards higher
performance, it isn’t clear that asynchronous circuits are actually any faster in practice.
Asynchronous circuits generally require extra time due to their signaling policies, thus
increasing average-case delay. Whether this cost is greater or less than the benefits listed
previously is unclear, and more research in this area is necessary.

Even with all of the problems listed above, asynchronous design is an important research
area. Regardless of how successful synchronous systems are, there will always be a need for
asynchronous systems. Asynchronous logic may be used simply for the interfacing of a
synchronous system to its environment and other synchronous systems, or possibly for more
complete applications.

8.1 DIFFERENCE BETWEEN SYNCHRONOUS AND ASYNCHRONOUS
Sequential circuits are divided into two main types: synchronous and asynchronous.

Their classification depends on the timing of their signals.

Synchronous sequential circuits change their states and output values at discrete instants
of time, which are specified by the rising and falling edge of a free-running clock signal. The
clock signal is generally some form of square wave as shown in Figure 8.1 below.

Clock Period

Falling edge

Rising edge
Clock width

Fig. 8.1 Clock Signal

From the diagram you can see that the clock period is the time between successive
transitions in the same direction, that is, between two rising or two falling edges. State
transitions in synchronous sequential circuits are made to take place at times when the clock
is making a transition from 0 to 1 (rising edge) or from 1 to 0 (falling edge). Between
successive clock pulses there is no change in the information stored in memory.

The reciprocal of the clock period is referred to as the clock frequency. The clock width
is defined as the time during which the value of the clock signal is equal to 1. The ratio of
the clock width and clock period is referred to as the duty cycle. A clock signal is said to be
active high if the state changes occur at the clock’s rising edge or during the clock width.
Otherwise, the clock is said to be active low. Synchronous sequential circuits are also known
as clocked sequential circuits.

The memory elements used in synchronous sequential circuits are usually flip-flops.
These circuits are binary cells capable of storing one bit of information. A flip-flop circuit has
two outputs, one for the normal value and one for the complement value of the bit stored
in it. Binary information can enter a flip-flop in a variety of ways, a fact which give rise to
the different types of flip-flops.

334 Switching Theory

In asynchronous sequential circuits, the transition from one state to another is initiated
by the change in the primary inputs; there is no external synchronization. The memory
commonly used in asynchronous sequential circuits are time-delayed devices, usually
implemented by feedback among logic gates. Thus, asynchronous sequential circuits may be
regarded as combinational circuits with feedback. Because of the feedback among logic gates,
asynchronous sequential circuits may, at times, become unstable due to transient conditions.

The differences between synchronous and asynchronous sequential circuits are:

• In a clocked sequential circuit a change of state occurs only in response to a
synchronizing clock pulse. All the flip-flops are clocked simultaneously by a common
clock pulse. In an asynchronous sequential circuit, the state of the circuit can
change immediately when an input change occurs. It does not use a clock.

• In clocked sequential circuits input changes are assumed to occur between clock
pulses. The circuit must be in the stable state before next clock pulse arrives. In
asynchronous sequential circuits input changes should occur only when the circuit
is in a stable state.

• In clocked sequential circuits, the speed of operation depends on the maximum
allowed clock frequency. Asynchronous sequential circuits do not require clock
pulses and they can change state with the input change. Therefore, in general the
asynchronous sequential circuits are faster than the synchronous sequential circuits.

• In clocked sequential circuits, the memory elements are clocked flip-flops. In
asynchronous sequential circuits, the memory elements are either unclocked flip-
flops (latches) or gate circuits with feedback producing the effect of latch operation.

In clocked sequential circuits, any number of inputs can change simultaneously (during
the absence of the clock). In asynchronous sequential circuits only one input is allowed to
change at a time in the case of the level inputs and only one pulse input is allowed to be
present in the case of the pulse inputs. If more than one level inputs change simultaneously
or more than one pulse input is present, the circuit makes erroneous state transitions due
to different delay paths for each input variable.

8.2 MODES OF OPERATION
Asynchronous sequential circuits can be classified into two types:

• Fundamental mode asynchronous sequential circuit

• Pulse mode asynchronous sequential circuit

Fundamental Mode
In fundamental mode, the inputs and outputs are represented by levels rather than

pulses. In fundamental mode asynchronous sequential circuit, it is also assumed that the time
difference between two successive input changes is larger than the duration of internal
changes. Fundamental mode operation assumes that the input signals will be changed only
when the circuit is in a stable state and that only one variable can change at a given time.

Pulse Mode
In pulse mode, the inputs and outputs are represented by pulses. In this mode of

operation the width of the input pulses is critical to the circuit operation. The input pulse
must be long enough for the circuit to respond to the input but it must not be so long as to

Asynchronous Sequential Logic 335

be present even after new state is reached. In such a situation the state of the circuit may
make another transition.

The minimum pulse width requirement is based on the propagation delay through the
next state logic .The maximum pulse width is determined by the total propagation delay
through the next state logic and the memory elements.

In pulse-mode operation, only one input is allowed to have pulse present at any time.
This means that when pulse occurs on any one input, while the circuit is in stable state, pulse
must not arrive at any other input. Figure 8.2 illustrates unacceptable and acceptable input
pulse change. X1 and X2 are the two inputs to a pulse mode circuit. In Fig. 8.2 (a) at time
t3 pulse at input X2 arrives.

X1

t1 t2 t4 t5

t6t3

X2

t

t

Fig. 8.2 (a) Unacceptable pulse mode input changes

X2

X1 t

t

Fig. 8.2 (b) Acceptable pulse mode input changes

While this pulse is still present, another pulse at X1 input arrives at t4. Therefore, this
kind of the presence of pulse inputs is not allowed.

Both fundamental and pulse mode asynchronous sequential circuits use unclocked S-R
flip-flops or latches. In the design of both types of circuits, it is assumed that a change occurs
in only one inputs and no changes occurs in any other inputs until the circuit enters a stable
state.

8.3 ANALYSIS OF ASYNCHRONOUS SEQUENTIAL MACHINES
Analysis of asynchronous sequential circuits operation in fundamental mode and pulse

mode will help in clearly understanding the asynchronous sequential circuits.

8.3.1 Fundamental Mode Circuits
Fundamental mode circuits are of two types:

• Circuits without latches

• Circuits with latches

8.3.2 Circuits without Latches
Consider a fundamental mode circuit shown in Fig. 8.3.

336 Switching Theory

()a

Next State
Logic

External
Inputs

Output
logic

Q1

Q2X2

X1

Next S ta te
Log ic

O utpu t Log ic

Q 1

Q 2

Y

X1
X 2

X 2

X 2

X1

X 2

X1

X1

X 2

Q 1
Q 2

Q 2

Q 1

Q 2

Q 2

X1

Q 2

(b)

Fig. 8.3 Fundamental mode asynchronous sequential circuit without latch
(a) block diagram (b) circuit diagram

Asynchronous Sequential Logic 337

This circuit has only gates and no explicit memory elements are present. There are two
feedback paths from Q1 and Q2 to the next-state logic circuit. This feedback creates the
latching effect due to delays, necessary to produce a sequential circuit. It may be noted that
a memory element latch is created due to feedback in gate circuit.

The first step in the analysis is to identify the states and the state variables. The
combination of level signals from external sources X1, X2 is referred to as the input state and
X1, X1 are the input state variables. The combination of the outputs of memory elements are
known as secondary, or internal states and these variables are known as internal or secondary
state variables. Here, Q1 and Q2 are the internal variables since no explicit elements are
present. The combination of both, input state and the secondary state (Q1, Q2, X1, X2) is
known as the total state. Y is the output variable.

The next secondary state and output logic equations are derived from the logic circuit
in the next-state logic block. The next-secondary state variables are denoted by Q1

+ and Q2
+

these are given by

Q X X X X Q X Q Q

Q X X Q X Q X Q

Y X Q Q

1
+

1 2 1 2 2 2 1 2

2
+

1 2 1 1 2 2 2

1 1 2

= + +

= + +
= ⊕ ⊕

Here, Q1 and Q2 are the present secondary state variables when X1, X2 input-state
variables occur, the circuit goes to next secondary state. A state table shown in Table 8.1 is
constructed using these logic equations. If the resulting next secondary state is same as the

present state, i.e. Q Q and Q Q1
+

1 2
+

2= = , the total state Q1, Q2, X1, X2 is said to be stable.
Otherwise it is unstable.

The stability of the next total state is also shown in Table 8.1.

Table 8.1 State Table

Present total state Next total state Stable total state Output

Q1 Q2 X1 X2 Q1
+ Q2

+ X1 X2 Yes/No Y

0 0 0 0 0 0 0 0 Yes 0
0 0 0 1 0 1 0 1 No 0
0 0 1 1 0 0 1 1 Yes 1
0 0 1 0 1 0 1 0 No 1
0 1 0 0 0 0 0 0 No 1
0 1 0 1 1 1 0 1 No 1
0 1 1 1 0 1 1 1 Yes 0
0 1 1 0 1 1 1 0 No 0
1 1 0 0 0 0 0 0 No 0
1 1 0 1 1 1 0 1 Yes 0
1 1 1 1 0 1 1 1 No 1
1 1 1 0 1 1 1 0 Yes 1
1 0 0 0 0 0 0 0 No 1
1 0 0 1 1 0 0 1 Yes 1
1 0 1 1 1 0 1 1 Yes 0
1 0 1 0 1 0 1 0 Yes 0

338 Switching Theory

8.3.3 Transition Table
A state table can be represented in another form known as transition table. The transition

table for the state table of Table 8.1 is shown in Fig. 8.4.

In a transition table, columns represent input states (one column for each input state)
and rows represent secondary states (one row for each secondary state). The next secondary
state values are written into the squares, each indicating a total state. The stable states are
circled. For any given present secondary state (Q1 Q2), the next secondary state is located in
the square corresponding to row for the present secondary state and the column for the input
state (X1 X2).

For example, for Q1 Q2 = 11 and X1 X2 = 00, the next secondary state is 00 (third row,
first column) which is an unstable state.

00 00

01

1111

10 10 10

1001

11 11

00

00

00

01

00 01 11 10

00

01

11

10

Q 1 Q 2

X 1 X 2

Q 1 Q 2

Next S ta te
+ +Inpu t S tate

Present inte rnal
s tate

Fig. 8.4 Transition table for Table 8.1.

For a given input sequence, the total state sequence can be determined from the transition
table.

Example. For the transition table shown in Fig 8.4, the initial total state is Q1 Q2 X1
X2 = 0000. Find the total state sequence for an input sequence X1 X2 = 00, 01, 11, 10, 00.

Solution. For a given internal state of the circuit, a change in the value of the circuit
input causes a horizontal move in the transition table to the column corresponding to the new
input value. A change in the internal state of the circuit is reflected by a vertical move. Since
a change in the input can occur only when the circuit is in a stable state, a horizontal move
can start only from a circled entry.

The initial total state is 0000 (first row, first column) which is a stable state. When the
input state changes from 00 to 01, the circuit makes a transition (horizontal move) from the
present total state to the next total state 0101 (first row, second column) which is unstable.
Next, the circuit makes another transition from 0101 to 1101 (vertical move) (second row,
second column) which is also an unstable state. Finally in the next transition (vertical move)
it comes to stable state 1101 (third row, second column). All these transitions are indicated
by arrows. Thus we see that a single input change produces two secondary state changes

Asynchronous Sequential Logic 339

before a stable total state is reached. If the input is next changed to 11 the circuit goes to
total state 0111 (horizontal move) which is unstable and then to stable total state 0111 (vertical
move). Similarly, the next input change to 10 will take the circuit to unstable total state 1110
(horizontal move) and finally to stable total state 1110 (vertical move). A change in input state
from 10 to 00 causes a transition to unstable total state 0000 (horizontal move) and then to
stable total state 0000 (vertical move), completing the state transitions for the input sequence.
All the state transitions are indicated by arrows.

The total state sequence is

0000 0101 1101 0111 1110 0000 .

From the preceding discussions we see that from the logic diagram of an asynchronous
sequential circuit, logic equations, state table, and transition table can be determined. Similarly,
from the transition table, logic equations can be written and the logic circuit can be designed.

8.3.4 Flow table
In asynchronous sequential circuits design, it is more convenient to use flow table rather

than transition table. A flow table is basically similar to a transition table except that the
internal states are represented symbolically rather than by binary states. The column headings
are the input combinations and the entries are the next states, and outputs. The state
changes occur with change of inputs (one input change at a time) and logic propagation delay.

The flow of states from one to another is clearly understood from the flow table. The
transition table of Fig. 8.4 constructed as a flow table is shown in Fig. 8.5. Here, a, b, c ,and
d are the states. The binary value of the output variable is indicated inside the square next
to the state symbol and is separated by a comma. A stable state is circled.

a d, 1b , o

c, 1 c, 0

a , 1

a , 0

a , 1

b, 1

00 01 11 10

a

b

c

d

Q 1 Q 2

X 1 X 2

Inpu t S tate

Present inte rnal
s tate

, 0

d , 1 d , 0 d , 0

c , 1

b , 0

a , 1

c , 1

U
ns

ta
bl

e
S

ta
te

O
utput

S tab le S ta te

Fig. 8.5 Flow table

From the flow table, we observe the following behavior of the circuit.

When X1 X2 = 00, the circuit is in state a . It is a stable state. If X2 changes to 1 while
X1 = 0, the circuit goes to state b (horizontal move) which is an unstable state. Since b is an
unstable state, the circuit goes to c (vertical move), which is again an unstable state. This

340 Switching Theory

causes another vertical move and finally the circuit reaches a stable state c . Now consider
X1 changing to 1 while X2 = 1, there is a horizontal movement to the next column. Here b
is an unstable state and therefore, there is a vertical move and the circuit comes to a stable
state b . Next change in X2 from 1 to 0 while X1 remaining 1 will cause horizontal move to
state c (unstable state) and finally to stable state c due to the vertical move. Similarly
changing X1 from 1 to 0 while X2 = 0 will cause the circuit to go to the unstable state a and
finally to stable state a . The flow of circuit states are shown by arrows.

In the flow table of Fig. 8.5 there are more than one stable states in rows. For example,
the first row contains stable states in two columns. If every row in a flow table has only one
stable state, the flow table is known as a primitive flow table.

From a flow table, transition table can be constructed by assigning binary values to each
state and from the transition table logic circuit can be designed by constructing K-maps for

Q and Q1
+

2
+.

8.3.5 Circuits with Latches
In Chapter 6 latches were introduced. Latch circuits using NAND and NOR gates are

shown in Fig. 8.6.

S

R

Q

Q

R

S

Q

Q

()a

()b

Fig. 8.6 (a) S - R latch using NAND gates. (b) S-R latch using NOR gates.

For the circuit of Fig 8.6a, the next-state equation is

Q S.Q S.(QR)

S + RQ

+ = =

=
Similarly, for the circuit of Fig. 8.6 b, the next-state equation is

Q R + Q R + (S + Q)

R . (S Q)

SR + RQ

+ = =

= +

=
Since, S = R = 1 is not allowed, which means SR = 0, therefore,

SR SR SR S(R R) S= + = + =
which gives,

Q S RQ+ = + It is same as the next-state equation for the circuit of Fig 8.6a

Asynchronous Sequential Logic 341

The transition table of S-R latch is shown in Fig. 8.7.

Q

0

1

0

1

0

0 0

0

1

1

SR

00 01 11 10

Q +

 = SR + RQ
 = S + RQ

Q +

Fig. 8.7 Transition table of S-R latch

From the transition table of S-R FLIP-FLOP, we observe that when SR changes from 11
to 00 the circuit will attain either the stable state � (first row, first column) or ① (second row,
first column) depending upon whether S goes to 0 first or R goes to 0 first respectively.
Therefore, S= R = 1 must not be applied.

Consider an asynchronous sequential circuit with latches shown in Fig. 8.8

S1

R1

S2

R2

S-R
FF -2

Q1

X1
X2

Q1

Q2

Q1

Q2

Q2

S-R
FF -1

X1
X2
Q2

X1

Q2

X1
X2

Q1

X1
X2

Q1

0

Y

Fig. 8.8 Asynchronous sequential circuit with latches

For FF-1, R1 = 0 and the excitation equation for S1 is

S1 = X X Q X Q1 2 2 1 2+

The next-state equation is

Q1
+ = S R Q1 1 1+

Substituting the value of S1 we obtain,

Q1
+ = X X Q X Q Q1 2 2 1 2 1+ +

Similarly, the excitation equations for FF-2 are

S2 = X X Q R =X X Q1 2 1 2 1 2 1,

342 Switching Theory

The next-state equation is

Q2
+ = S R Q2 2 2+

= X X Q + X X Q Q1 2 1 1 2 1 2.

Using next-state equation for FF-1 and FF-2, transition table is obtained as shown in Fig.
8.9.

00 01 11 10Q 1 Q 2

X 1 X 2

00

01

11

10

00 00

11 11 11

10 10 10 10

10

11 11 01 01

1001

Q 1 Q 2
+ +

Fig. 8.9 Transition table for the circuit of Fig. 8.8

The output function is

Y = X1 X2 Q1 Q2

Its flow table is shown in Fig. 8.10.

d, 0

c , 0

00 01 11 10

a

b

c

d

Q 1 Q 2

X 1 X 2

a , 0 a , 0

d , 0 d , 0 d , 0 d , 0

c , 0

b , 0 b , 0

c , 1 d , 0

c, 0 c, 0

b , 0

Q 1 Q 2
+ +

Fig. 8.10 Flow table for the circuit of Fig. 8.8

Asynchronous Sequential Logic 343

From a flow table, transition table can be obtained by assigning binary values to the
states. From the transition table, logic equations can be obtained by constructing K-maps for
S and R inputs of every latch. For this, the excitation table of S-R latch will be used. Logic
circuit can then be designed using the logic equation for S, R inputs of every latch.

Example. Design logic circuit using S- R latches for the transition table of Fig. 8.4.

Solution. Since, there are two internal states Q1 and Q2, therefore, two S-R latches are
required for the design of logic circuit. Let the two latches be L1 and L2. The inputs and
outputs of these latches are given as

Latch Inputs Outputs

L1 S1, R1 Q1, Q1

L2 S2, R2 Q2, Q2

The excitation table of an S-R latch is given in Table 8.2. This is same as for S-R flip-
flop.

Table 8.2 Excitation table of S-R latch

Present state Next state Inputs

Q Q+ S R

0 0 0 ×

0 1 1 0

1 0 0 1

1 1 × 0

To determine S1 and R1 for different values of X1 X2, we make use of Q1 and Q1
+ values

for every square of transition table. For example, this square in the first row and first column

gives Q1 = 0 and Q1
+ = 0. This means, for the present state 0 the circuit gives next state as

0 for Q1. Corresponding to this we find the value of S1 and R1 using the Table 8.2, which are
S1 = 0 and R1 = X.

Thus the entry in the cell corresponding to X1 X2 = 00 and Q1 Q2 = 00 for K-map of S1
will be 0 and for K-map of R1 it will be X. Similarly, K-map entries are determined for S1
and R1.

Following similar procedure, K-maps for S2 and R2 are constructed. The K-maps are
given in Fig. 8.11.

From the K-map of Fig. 8.11, we obtain logic equations for S1, R1, S2, and R2.

S1 = X X X X Q1 2 1 2 2+

R1 = X X X Q1 1 2 2+

S2 = X X Q1 2 2

R2 = X X1 2

The logic circuit is shown in Fig. 8.12.

344 Switching Theory

00 01 11 10Q 1 Q 2

X 1X 2

00

01

11

10

0 0 0

0

1

0

0

1 1

0× ×

×××0

() K-m ap for S 1a

00 01 11 10Q 1Q 2

X 1X 2

00

01

11

10

× 0×

×

1

1

0

0

0

0

0

0

×

1

0

() K-m ap for R 1b

00 01 11 10Q 1Q 2

X 1X 2

00

01

11

10

0 1 0 0

0

0 ×

×

×

×

0 0 0 0

() K-m ap for S 2c

×

×

00 01 11 10Q 1Q 2

X 1X 2

00

01

11

10

0×

×

×

0

×

× ×

1

1 0

0 0

×

0

0

() K-m ap for R 2d

×

Fig. 8.11

L2

S2

R 2

R 1

S1

L1

Q1

Q1

X1

X2

Q1

X1

X2

X1

X2

Q2

Q2

X1

X2

X1

X2

X1

X2

Q1

Q2

Fig. 8.12

Asynchronous Sequential Logic 345

8.3.6 Races and Cycles
A race condition exists in an asynchronous sequential circuit when more than one state

variable change value in response to a change in an input variable. This is caused because
of unequal propagation delays in the path of different secondary variables in any practical
electronic circuit. Consider a transition table shown in Fig. 8.13. When both the inputs X1

and X2 are 0 and the present state is Q1 Q2 = 00, the resulting next state Q Q1
+

2
+ will have

Q1
+ = 1 and Q2

+ = 1 simultaneously if the propagation delays in the paths of Q1 and Q2 are
equal.

00 01 11 10Q 1 Q 2

X 1 X 2

00

01

11

10

00

11 10 11

10 10

00

11

11

00

1111

11 01

0110

Q 1 Q 2
+ +

Fig. 8.13

Since Q1 and Q2 both are to change and in general the propagation delays in the paths
of Q1 and Q2 are not same, therefore, either Q1 or Q2 may change first instead of both
changing simultaneously. As a consequence of this the circuit will go to either state 01 or to
state 10.

If Q2
+ changes faster than Q1

+ , the next state will be 01, then 11 (first column, second

row) and then to the stable state 11 (first column, third row) will be reached. On the other

hand, if Q1
+ changes faster than Q2

+ , the next-state will be 10, then 11 (first column, fourth
row) and then to the stable state (first column, third row) will be reached. In both the
situations, the circuit goes to the same final stable state 11 . This situation, where a change
of more than one secondary variable is required is known as a race.

There are two types of races: noncritical race and critical race.

In the case of noncritical race, the final stable state in which the circuit goes does not
depend on the sequence in which the variables change. The race discussed above is a noncritical
race. In the case of critical race, the final stable state reached by the circuit depends on the
sequence in which the secondary variables change. Since the critical race results in different
stable states depending on the sequence in which the secondary states change, therefore, it
must be avoided.

Example. In the transition table of Fig. 8.13, consider the circuit in stable total state
1100. Will there be any race, if the input state changes to 01? If yes, find the type of race.

346 Switching Theory

Solution. When the circuit is in stable total state, X1 X2 = 00. Now X2 changes to 1

while X1 = 0. From Fig. 8.13 we see that the required transition is to state 00. If Q1
+ and

Q2
+ become 00 simultaneously, then the transition will be

11 → 00 → 00

These transitions are shown by solid arrows in Fig. 8.14.

00 01 11 10Q 1 Q 2

X 1 X 2

00

01

11

10

00

11

10

Q 1 Q 2
+ +

00

00

Fig. 8.14

If Q2
+ becomes 0 faster than Q1

+ , the circuit will go to the state 10 and then to 10 , which
is a stable state. The transition is

11 → 10 → 10

On the other hand, if Q1
+ becomes 0 faster than Q2

+ , the transition will be

11 → 01 → 00 → 00

It is shown by dotted arrow in Fig. 8.13. Thus, we see that the circuit attains different
stable states 00 or 10 depending upon the sequence in which the secondary variables
change.

Therefore, the race condition exists in this circuit and it is critical race.

Races can be avoided by making a proper binary assignment to the state variables in a
flow table. The state variables must be assigned binary numbers in such a way so that only
one state variable can change at any one time when a state transition occurs in the flow table.
The state transition is directed through a unique sequence of unstable state variable change.
This is referred to as a cycle. This unique sequence must terminate in a stable state,
otherwise the circuit will go from one unstable state to another unstable state making the
entire circuit unstable.

8.3.7 Pulse-mode Circuits
In a pulse-mode asynchronous sequential circuit, an input pulse is permitted to occur

only when the circuit is in stable state and there is no pulse present on any other input.

Asynchronous Sequential Logic 347

When an input pulse arrives, it triggers the circuit and causes a transition from one stable
state to another stable state so as to enable the circuit to receive another input pulse. In this
mode of operation critical race can not occur. To keep the circuit stable between two pulses,
flip-flops whose outputs are levels, must be used as memory elements.

For the analysis of pulse-mode circuits, the model used for the fundamental-mode circuits
is not valid since the circuit is stable when there are no inputs and the absence of a pulse
conveys no information. For this a model similar to the one used for synchronous sequential
circuits will be convenient to use.

In pulse-mode asynchronous circuits the number of columns in the next-state table is
equal to the number of input terminals.

Consider a pulse-mode circuit logic diagram shown in Fig. 8.15. In this circuit there are
four input variables X1, X2, X3, and X4, and Y is the output variable. It has two states Q1
and Q2.

S-R
FF -2

S-R
FF -1

Q1

Q1

S1

R1
X4

X3

X2

S2

R2Q1

X3

X4

X1

Q1

Q2

Q2

Q2

X4
Y

Fig. 8.15

The excitation equations are:

S (X X) or S X X

R X or R X

S Q X or S Q X

R (X Q X) or R X Q X

1 2 3 1 2 3

1 4 1 4

2 1 1 2 1 1

2 4 1 3 2 4 1 3

= + = +

= =

= =

= + = +

The output equation is: Y = X Q4 2

The next-state equations are obtained by using the excitation equations and the
characteristic equation of latch.

348 Switching Theory

These are: Q1
+ = S R Q1 1 1+

= X X X Q2 3 4 1+ +
and

Q S R Q

Q X X Q X Q

Q X X Q X Q

Q X X Q X Q

Q X Q Q X Q X X

2
+

2 2 2

1 1 4 1 3 2

1 1 4 1 3 2

1 1 4 1 3 2

1 1 1 2 4 2 3 4

= +

= + +

= +

= + +

= + +

() .

. () .

. () .

The transition table is constructed by evaluating the next-state and output for each
present state and input value using next-state equations and output equation. The transition
table is shown in Fig. 8.16.

Q 1 Q 2

Input variables

X 1

00

01

11

10

01, 0

X 2 X 3 X 4

10, 0 10, 0 00, 1

01, 0 11 , 0 10, 0 00, 0

00, 011 , 011 , 011 , 0

10, 0 10, 0 10, 0 10, 0

O utpu t
value

Next-state
valuePresent

Sta te

Fig. 8.16

 It has four rows (one row for each combination of state variables) and four columns (one
column for each input variable). Since in pulse-mode circuits only one input variable is
permitted to be present at a time, therefore, the columns are for each input variable only and
not for the combinations of input variables.

Flow table can be constructed from the transition table and is shown in Fig. 8.17. Here,
S0, S1, S2, and S3 are the four state variables.

Q 1 Q 2
X 1

S , 01

X 2 X 3 X 4

S , 03 S , 03 S , 10

S , 01 S , 02 S , 03 S , 00

S , 02 S , 02 S , 02 S , 00

S , 03 S , 03 S , 03 S , 10

S0

S1

S2

S3

Present
State

Inpu t variables

Fig. 8.17

Asynchronous Sequential Logic 349

From a flow table a transition table can be constructed by assigning binary values to the
states. From a transition table next-state equations can be obtained and the logic diagram can
then be obtained.

8.4 ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN
Design of asynchronous sequential circuits is more difficult than that of synchronous

sequential circuits because of the timing problems involved in these circuits. Designing an
asynchronous sequential circuit requires obtaining logic diagram for the given design
specifications. Usually the design problem is specified in the form of statements of the desired
circuit performance precisely specifying the circuit operation for every applicable input sequence.

8.4.1 Design Steps
1. Primitive flow table is obtained from the design specifications. When setting up a

primitive flow table it is not necessary to be concerned about adding states which
may ultimately turn out to be redundant. A sufficient number of states are to be
included to completely specify the circuit performance for every allowable input
sequence. Outputs are specified only for stable states.

2. Reduce the primitive flow table by eliminating the redundant states, which are
likely to be present. These redundant states are eliminated by merging the states.
Merger diagram is used for this purpose.

3. Binary numbers are assigned to the states in the reduced flow table. The binary
state assignment must be made to ensure that the circuit will be free of critical
races. The output values are to be chosen for the unstable states with unspecified
output entries. These must be chosen in such a way so that momentary false
outputs do not occur when the circuit switches from one stable state to another
stable state.

4. Transition table is obtained next.

5. From the transition table logic diagram is designed by using the combinational
design methods. The logic circuit may be a combinational circuit with feedback or
a circuit with S-R latches.

The above design steps is illustrated through an example.

Example. The output (Y) of an asynchronous sequential circuit must remain 0 as long
as one of its two inputs X1 is 0. While X1 = 1, the occurrence of first change in another input
X2, should give Y = 1 as long as X1 = 1 and becomes 0 where X1 returns to 0. Construct a
primitive flow table.

Solution. This circuit has two inputs X1, X2 and one output Y. For the construction of
flow table, the next-state and output are required to be obtained. The flow table is shown in
Fig. 8.18.

For X1 X2 = 00, let us take state a. When the circuit has X1 X2 = 00 the output is 0
(since X1 = 0) and the circuit is in stable state a . The next-state and output are shown in
the first column, first row of Fig. 8.18.Since only one input is allowed to change at a time,
therefore, the next input may be X1 X2 = 01 or 10.

If X1 X2 = 01, let us take another state b, correspondingly the second row of the flow
table corresponds to state b. when the inputs change from X1 X2 = 00 to 01, the circuit is

350 Switching Theory

required to go to stable state b and output is 0 (since X1 = 0). Therefore, the entry in the
second column, first row will be b, 0 and in the second column, second row will be b , 0. The
output corresponding to unstable state b is taken as 0 so that no momentary false outputs occur
when the circuit switches between stable states. On the other hand if X1 X2 = 10, the circuit
is required to go to another stable state c with output 0.Therefore, the entries in the fourth
column, first row and fourth column, third row will be respectively c, 0 and c , 0.

00 01 11 10

X 1 X 2

a

b

c

d

e

f

a , 0

b

, 1fe , 1– , –

– , –

– , –

a , –

b , – , 1e f, 1

b , 0– , – f, –

– , –

c, 0– , –b , 0

a , 0

a , 0

, 0 d , 0

, 0ce , –

, 0d

Present-
state

Fig. 8.18 Flow table

Since both the inputs cannot change simultaneously, therefore, from stable state a , the
circuit cannot go to any specific state corresponding to X1 X2 = 11 and accordingly the entry
in the third column, first row will be –, –. The dashes represent the unspecified state, output.

Now consider the stable state b . The inputs X1 X2 can change to 00 or 11.If X1 X2 =
00, the circuit will go to state a. Therefore, the entry in the first column, second row will
be a, 0. From this unstable state the circuit goes to stable state a . On the other hand if
X1 X2 = 11, then the circuit goes to a new state d. The output corresponding to X1 X2 = 11
will be 0 since, there is no change in X2, which is already 1. Therefore, the entry in the third
column, second row will be d, 0. The fourth row corresponds to state d, and the entry in the
third column, fourth row, will be d , 0. From b , the circuit is not required to go to any
specific state and therefore, the entry in the fourth column, second row will be –,–.

Similarly, now consider stable state c . The inputs can change to X1 X2 = 11 or 00. If
X1 X2 = 11, the circuit goes to a new stable state e and the output will be 1, since X2
changes from 0 to 1 while X1 = 1. The entry in the third column, third row will be c, –. Output
has to change from 0 to 1 from stable state c to stable state e , which may or may not
change to 1 for unstable e. The entry in the third column, fifth row will be e , 1. The entry
in the second column third row will be –, – and the entry in the first column, third row will
be a, 0 (for X1 X2 = 00).

In the same manner, we consider the stable d and obtain the entries f, – (fourth
column, fourth row); f , 1 (fourth column, sixth row); b, 0 (second column, fourth row) and
–, – (first column, fourth row).

Asynchronous Sequential Logic 351

Similar procedure applied to e and f , yields the remaining entries of the flow table.

Since, every row in the flow table of Fig. 8.18 contains only one stable state, therefore,
this flow table is a primitive flow table.

8.4.2 Reduction of States
The necessity of reducing the number of states has been discussed in chapter 6 and the

equivalent states have been defined. When asynchronous sequential circuits are designed, the
design process starts from the construction of primitive flow table. A primitive flow table is
never completely specified. Some states and outputs are not specified in it as shown in Fig.
8.18 by dashes. Therefore, the concept of equivalent states can not be used for reduction of
states. However, incompletely specified states can be combined to reduce the number of states
in the flow table. Two incompletely specified states can be combined if they are compatible.

Two states are compatible if and only if, for every possible input sequence both produce
the same output sequence whenever both outputs are specified and their next states are
compatible whenever they are specified. The unspecified outputs and states shown as dashes
in the flow table have no effect for compatible states.

Example. In the primitive flow table of Fig. 8.18, find whether the states a and b are
compatible or not. If compatible, find out the merged state.

Solution. The rows corresponding to the states a and b are shown in Fig. 8.19. Each
column of these two states is examined.

00 01 11 10

a

b a, 0 b , 0 d , 0 – , –

c, 0– , –b , 0a , 0

X X1 2

Fig. 8.19

Column-1. Both the rows have the same state a and the same output 0. a in first row
is stable state and in the second row is unstable state.

Since for the same input both the states a and b have the same specified next-state a
and the same specified output 0. Therefore, this input condition satisfies the requirements of
compatibility.

Column-2. The input condition X1 X2 = 01 satisfies the requirements of compatibility as
discussed for column-1.

Column-3. The first row has unspecified next-state and output and the second row has
specified state and output. The unspecified state and output may be assigned any desired state
and output and therefore, for this input condition also the requirements of compatibility are
satisfied.

Column-4. The requirements of compatibility are satisfied for the reasons same as
applicable to column-3.

Therefore, we conclude that since the next-states and the outputs for all the input
combinations are compatible for the two states a and b, the two states are compatible.The
merged state will be as shown in Fig. 8.20

352 Switching Theory

00 01 11 10

a , 0

X X1 2

b , 0 d , 0 c, 0a

Fig. 8.20

When the merged state entries are determined a circled entry and an uncircled entry
results in a circled entry, since the corresponding state must be stable as shown in Fig. 8.20.

Example. In the primitive flow table of Fig. 8.18 find whether the states a and e are
compatible or not. Examine their compatibility if the entries in the fourth column for the states
a and e have same output.

Solution. The partial flow table for states a and e of Fig. 8.18 is shown in Fig. 8.21.

00 01 11 10

a

e –, – b , – e , 1 f, 1

c, 0– , –b , 0a , 0

X X1 2

Fig. 8.21

From this we observe the following

Column-1 compatible

Column-2 compatible

Column-3 compatible

Column-4 not compatible, since the outputs are different.

Therefore, the states a and e are not compatible.

In case of same output in column-4, the outputs are said to be not conflicting and the
states a and e are compatible if and only if the states c and f are compatible. This is referred
to as c, f is implied by a, b or a, b implies c, f.

8.4.3 Merger Diagram
A merger diagram (or graph) is prepared for a primitive flow table to determine all the

possible compatible states (maximal compatible states) and from this a minimal collection of
compatibles covering all the states.

A merger graph is constructed following the steps outlined below:

• Each state is represented by a vertex, which means it consists of n vertices, each
of which corresponds to a state of the circuit for an n- state primitive flow table.
Each vertex is labelled with the state name.

• For each pair of compatible states an undirected arc is drawn between the vertices
of the two states. No arc is drawn for incompatible states.

• For compatible states implied by other states a broken arc is drawn between the
states and the implied pairs are entered in the broken space.

The flow table is required to be examined for all the possible pairs of states. All the pairs
are checked and the merger graph is obtained. Thus we see that the merger graph displays
all possible pairs of compatible states and their implied pairs. Next it is necessary to check
whether the incompatible pair(s) does not invalidate any other implied pair. If any implied pair

Asynchronous Sequential Logic 353

is invalidated it is neglected. All the remaining valid compatible pairs form a group of maximal
compatibles.

The maximal compatible set can be used to construct the reduced flow table by assigning
one row to each member of the group. However, the maximal compatibles do not necessarily
constitute the set of minimal compatibles. The set of minimal compatibles is a smaller
collection of compatibles that will satisfy the row merging.

The conditions that must be satisfied for row merging are:

• the set of chosen compatibles must cover all the states, and

• the set of chosen compatibles must be closed.

The condition of covering requires inclusion of all the states of the primitive flow graph
in the set of chosen compatibles. This condition only defines a lower bound on the number
of states in the minimal set. However, if none of their implied pairs are contained in the set,
the set is not sufficient and this is referred to as closed condition not being satisfied. Therefore,
condition of closed covering is essentially required for row merging.

8.5 ESSENTIAL HAZARDS
Similar to static and dynamic hazards in a combinational circuits, essential hazards occur

in sequential circuits. Essential hazard is a type of hazard that exists only in asynchronous
sequential circuits with two or more feedbacks. Essential hazard occurs normally in toggling
type circuits. It is an error generally caused by an excessive delay to a feedback variable in
response to an input change, leading to a transition to an improper state. For example, an
excessive delay through an inverter circuit in comparison to the delay associated with the
feedback path many cause essential hazard. Such hazards cannot be eliminated by adding
redundant gates as in static hazards. To avoid essential hazard, each feedback loop must be
designed with extra care to ensure that the delay in the feedback path is long enough
compared to the delay of other signals that originate from the input terminals.

Even though an asynchronous sequential circuit (network) is free of critical races and the
combinational part of the network is fee of static and dynamic hazards, timing problems due
to propagation delays may still cause the network to malfunction and go to the wrong state.
To better understand, consider for example the network of Fig. 8.22.

FF 1

0 1 0 → →

y1 y1

S1R1

0 1 0 → →0 1→

G1 G2

y2 y2
x

0 1→
0 1→

0 1→
x 1→0

FF 2

y2 y2

S2R2

0 1 0 → →

0 1 0 → →

G3 G4

y1
1→0

1→0
y1

0 1→

x
y y1 2

00

01

10

11 11

11

00

00

01

10

01

10

0 1
x

y y1 2

00

01

10

11 c

c

a

a

b

d

b

d

0 1

Characteris tic equation

y (next) = S + R y = xy + (x + y)y

y (next) = S + R y = xy + (x + y) y
1 1 1 1 2 2 1

2 2 2 2 1 1 2

0 1→

x

Fig. 8.22 Network with essential hazards.

354 Switching Theory

There is no hazards in the combinational part of the network, and flow table inspection
shows that there are no critical races. If we start in state a and change x to 1, the network
should go to state d . Let consider the following possible sequence of events.

(i) x change 0 to 1.

(ii) Gate 3 (G2) output changes 0 to 1.

(iii) Flip-flop (FF1) output y1 changes 0 to 1.

(iv) G4 output changes 0 to 1.

(v) FF2 output changes 0 to 1.

(vi) Inverter output x changes 1 to 0.

(vii) G1 output changes 0 to 1, G2 output changes back to 0, and G4 output changes back
to 0.

(viii) Flip-flop output y1 changes back to 0.

Though the network should go to stage d when change x to 1 but the final state of the
network is b instead of d . The malfunction illustrated in example network of figure is
referred to as an essential hazard. This came about because the delay in inverter was large
than the other delays in the network, so that part of the network having value x = 1 while
other part have value x = 0. The final result was that the network acted as if the input x
had changed three times instead of once so that the network went through the sequence of
states y1y2 = 00, 10, 11, 01. Essential hazards can be located by inspection of the flow table.
An essential hazard can be defined as follows:

A flow table has an essential hazard starting in stable total state s for input variable
xi if and only if the stable total state reached after one change in xi different froms the stable
total state reached after three changes in xi.

If an essential hazard exists in the flow table for total stable state s and input xi, then
due to some combination of propagation delays network go to the wrong state when xi is
changed starting in s on realization. This occurs because the change in xi reaches different
parts of the network at different times.

In order to test a flow table for essential hazards it is necessary to test each stable total
for each possible input change using the definition of essential hazard given.

Essential hazards can be eliminated by adding delays to the network. For the network
show in figure, the essential hazard can be eliminated by adding a sufficiently large delay to
the output of FF1, because he change in x output of FF1 does.

We can summarize the design of an asynchronous network is free of timing problems as:

(i) Make a state assignment which is free of critical races.

(ii) Design the combinational part of the network so that it is free of hazards (if require
by adding redundant gates).

(iii) Add delays in the feedback paths for the state variables as required to eliminate
essential hazards.

8.6 HAZARD-FREE REALIZATION USING S-R FLIP-FLOPS
The design of hazard-free asynchronous networks can be simplified using S-R flip-flops.

We have already seen in chapter 6 that a momentary 1 applied to the S or R input can set
or reset the flip-flop, however a momentary 0 applied to S or R will have no effect on the flip-

Asynchronous Sequential Logic 355

plop state. Since a 0-hazard can produce a momentary false 1, the networks realizing S and R
must be free of 0-hazards but the S and R networks may contain 1-hazards. A minimum two-
level sum of products expression is free of 0-hazards but it may contain 1-hazards. For this
reason, the minimum sum of products can be used as a starting point for realizing the S-R flip-
flop input equations. Simple factoring or transformation which do not introduce 0-hazards can
be applied to the minimum sum-of-products expressions, in the process of realizing S and R.

A typical network structure with the S-R flip-flop driven by 2-level AND-OR networks
constructed from cross-coupled NOR gates is shown in Fig. 8.23(a). The Fig. 8.23(b) shows
equivalent network structure with multiple input NOR gates. The two structure are equivalent
since in both cases.

Q = (.......)Q + R R1 2+ + ′
and Q = (Q + S1 + S2 +)′

R

S Q

Q

S 2

S 1

R 2

R 1

() S-R flip-flop d riven by 2 -leve l AND-O R networka

Q

Q

S2

S1

R 2

R 1

() E qu ivalen t network structureb

Fig. 8.23 Gate structures for S-K flop-flip realization of flow table.

356 Switching Theory

Even if an asynchronous network is realized using S-R flip-flops and S and R networks
are free of 0-hazards, essential hazards may still be present. Such essential hazards may be
eliminated as discussed previously by adding delays in the feedback paths for the state
variables.

An alternative method for eliminating essential hazards involves changing the gate
structure of the network. This method can be applied only if wiring delays are negligible and
all the gate delays are concentrated at the gate outputs.

As illustrated in previous section, the following sequence of events is needed for an
essential hazard to cause a network of maltfunction.

(i) An input variable changes.

(ii) A state variable changes in response to the input variable change.

(iii) The effect of the state variable change propagates through the network and initiates
another state variable change before.

(iv) The original input variable change has propagated through the entire network.

Therefore, in an asynchronous network with S-R flip-flops, we can eliminate the essential
hazards by arranging the gate structure so that the effect of any input change will propagate
to all flip-flop inputs before any state variable changes can propagate back to the flip-flop
inputs. For example, the essential hazard of Fig. 8.24 can be eliminated by replacing the R2
and S2 networks with the network of Fig. 8.24.

y1
x y1

R2 S2

Fig. 8.24

Assuming that wiring delays are negligible that the gate delay is concentrated at the
gate output any change in x will propagate to R2 and S2 before flip-flop 1 output y1 can
change state and this change in y1 can propagate to R2 and S2. This eliminates the essential
hazard.

In the Fig. 8.23 (b), each AND gate can have inputs of the form shown in Fig. 8.25 (a),
where x’s are external inputs to the circuit, and the y’s are feedback from flip-flop outputs.
If there are essential hazards in the flow table, then the circuit could malfunction due to the
inverter delays. By replacing the AND gate with the NOR-AND network of Fig. 8.25 (b), the
inverters on the x variables are eliminated. Therefore by replacing all of the AND gate in
Fig. 8.23 with the NOR-AND combinations as indicated in Fig. 8.25, all of the estimates
hazards will be eliminated.

Asynchronous Sequential Logic 357

() Replacem ent fo r ()b a

S (o r R)i i

xn
xq

y ′
1

y′
j

yk
yp

x1
xm

xq

xn

x1

xm

yy

y j

y ′k
y′p

S (o r R)i i

() AND ga te w ith general inpu tsa

Fig. 8.25 A gate transformation for elimination of essential hazards.

8.7 SOLVED EXAMPLES
Example 1. Construct merger diagram for the primitive flow table of Fig. 8.18. Determine

maximal compatibles and the minimal set of compatibles.

Solution: For construction of merger diagram, every row of the primitive flow table is
checked with every other row to determine compatibility of states.

Consider row-1 (state a)

a, b are compatible

a, c are compatible

a, d are compatible if c, f are compatible

a, e are compatible if c, f are compatible

a, f are compatible if c, f are compatible

row-2 (state b)

b, c are compatible if d, e are compatible

b, d are compatible

b, e are not compatible (outputs are conflicting)

b, f are not compatible (outputs are conflicting)

row-3 (state c)

c, d are compatible if e, d and c, f are compatible

358 Switching Theory

c, e are not compatible (outputs are conflicting)

c, f are not compatible (outputs are conflicting)

row-4 (state d)

d, e are not compatible (outputs are conflicting)

d, f are not compatible (outputs are conflicting)

row-5 (state e)

e, f are compatible

The primitive flow table has six states therefore, there are six vertices in the merger
diagram as shown in Fig. 8.26.

a

f

e

d

c

b

Fig. 8.26 Merger diagram

Solid arcs are drawn between (a, b), (a, c), (b, d) and (f, e) vertices. Corresponding

to these states being compatibles. Since (c, f) and (d, e) are not compatible, therefore,
there are no implied pairs available.

From the merger diagram, we get the maximal compatibles:

(a, b), (a, c), (b, d), (e, f)

Since (a, b) is covered by (a, c) and (b, d), therefore, the minimal set is (a, c), (b, d),
(e, f)

Example 2. Determine the reduced flow table of Fig. 8.19.

Solution: From the merger diagram, we have obtained three pairs of compatible states:
These compatibles are merged and are represented by

a, c : S0

b, d : S1

e, f : S2

The reduced flow table is shown in Fig.
8.27

00 01 11 10

X1X2

S0, 0 S , 01

S1

S2

S0 S , –2

S , –2S , 00

S , –0 S , –1

S , 01S , 01

S , 12 S , 12

S , 00

Present-state

 Fig. 8.27 Reduced flow table

Asynchronous Sequential Logic 359

Example 3. Assign binary states to the reduced flow table of Fig. 8.27. Avoid critical race.

Solution: Let us assign the following binary states to S0, S1, and S2 for the reduced flow
table of Fig. 8.27

S0 → 00

S1 → 01

S2 → 11

The transition table will be as shown in Fig. 8.28

00 01 11 10Q 1Q 2

X 1X 2

00

01

11

10

00, 0

01, 0 01, 0

00, 0

11 , 111 , 101, –00, –

00, 0 11 , –

11 , –01, 0

Fig. 8.28 Transition table

In the transition table of Fig. 8.28, we observe that race condition occurs in the following
cases:

(i) From stable state 00 to unstable state 11 when X1 X2 changes from 10 to 11.

(ii) From stable state 11 to unstable state 00 when X1 X2 changes from 10 to 00.

To avoid critical race, one unstable state 10 is added with the entries 00, –; –, –; 11,
–; –, – and the entries in third column, first row is changed from 11, – to 10, – and in first
column, third row from 00, – to 10, –.

The modified transition table is given in Fig. 8.29.

00 01 11 10Q1Q2

X1 X2

00

01

11

10 00, – –, – 11, – –, –

11, 111, 101, –10, –

00, 0 01, 0 01, 0 11. –

00, 010, –01, 000, 0

Fig. 8.29 Modified transition table

360 Switching Theory

Example 4. Design logic circuit with feedback for the transition table of Fig. 8.29.

Solution: The K-maps for Q Q1
+

2
+, , and Y determined from the transition table are given

in Fig. 8.30.

From the K-maps, we obtain,

Q1
+ = X X Q X Q Q X X Q X Q1 2 2 2 1 2 1 2 2 1 1+ + +

Q2
+ = X X X Q X Q1 2 1 2 1 1+ +

Y = Q1

Logic circuit using gates can be obtained from the above logic equations.

Thus we see that the design steps outlined above can be used to design an asynchronous
sequential circuit.

Fig. 8.30 K-Maps for (a) Q1
+ (b) Q2

+ (c) Y

Example 5. In the state transition table of Fig. 8.13, if X1 X2 = 10 and the circuit is in
stable state 01 , find the cycle when X2 is changed to 1 while X1 remaining 1.

Solution: The circuit is in stable state 01 (fourth column, second row). When X2
changes to 1, the circuit will go to the state 11 (third column, second row), then to state 10

Asynchronous Sequential Logic 361

(third column, third row) and finally to the stable state 10 (third column, fourth row). Thus
the cycle is

01 → 11 → 10 → 10

8.8 EXERCISES
1. (a) Explain the difference between asynchronous and synchronous sequential

circuits.

(b) Define fundamental mode of operation.

(c) Define pulse mode of operation

(d) Explain the difference between stable and unstable states.

(e) What is the difference between internal state and total state.

2. Describe the design procedure for asynchronous sequential circuits.

3. What do you mean by critical and non-critical races? How can they be avoided.?

4. Describe cycles in asynchronous sequential circuits.

5. Design a JK flip-flop asynchronous sequential circuit that has two inputs and single
output. The circuit is required to give an output equal to 1 if and only if the same
input variable changes two or more times consecutively.

6. Design an asynchronous circuit that has two inputs and single output .The circuit
is required to give an output whenever the input sequence 00,10,11 and 01 are
received but only in that order.

7. (a) Design an asynchronous binary counter with one pulse input and two
outputs,capable of counting from zero to three .When the circuit is pulsed after
the count has reached three,it should return to zero.The output should provide
continuosly the count modulo 4.

(b) Reprat the problem for level inputs and outputs.

8. Find all of the essential hazards in the following flow table. How can table essential
hazard which occurs starting in b be eliminated.

X1X2

Q1Q2 00 01 11 10

a 00 a b a d

b 01 a b c –

c 11 – d c d

d 10 a d a d

362 Switching Theory

9
CHAPTER

9.0 INTRODUCTION
Finite state machines are a powerful tool for designing sequential circuits, but they are

lacking in that they do not explicitly represent the algorithms that compute the transition or
output functions, nor is timing information explicitly represented. We can recast the idea of
a state machine to include a representation of the algorithms. The result is an algorithmic
state machine, or ASM. “The ASM chart separates the conceptual phase of a design from the
actual circuit implementation.” An algorithmic state machine diagram is similar to a flowchart
but with some differences. Square boxes represent the states, diamonds represent decisions,
and ovals represent outputs. States can also have outputs, and the outputs associated with
a state are listed in the state box. State boxes are labelled with the state name and possibly
with a binary code for the state. The basic unit of an ASM is the ASM block. An ASM block
contains a single state box, a single entry path, and one or more exit paths to other ASM
blocks. Algorithmic state machines capture the timing of state transitions as well.

9.1 DESIGN OF DIGITAL SYSTEM
In the earlier chapters we have presented the analysis and design of various types of

Digital System for specified task. A close look on all such systems reveal that these systems
can be viewed as collection of two subsystems.

(i) The Data Processing or manipulating subsystem which include the operation such
as shifting, Adding, counting, dividing etc.

(ii) The control subsystem or simply control. This subsystem has to initiate, superwise
and sequence the operation in data processing unit.

Usually design of data processor is afair and simple design. But design of control logic
with available resources is a complex and challenging part, perhaps because of timing relations
between the event. And in this chapter we are majority concerned with design of control.

The control subsystem is a sequential circuit whose internal states dictate the control
command to sequence the operations in data processing unit. The digital circuit used as
control subsystem is responsible to generate a time sequence of control signals that initiates
operation in data processor, and to determine the next state of control subsystem itself. The
task of data processing and control sequence are specified by means of a hardware algorithm.
An algorithm is a collection of produces that tells how to obtain the solution. A flow chart
is a simple way to represent the sequence of procedures and decision paths for algorithm.

A hardware algorithm is a procedure to implement the problem with the available
hardware or resource. A flow chart for hardware algorithm translates the word statements

362

ALGORITHMIC STATE MACHINE

Algorithmic State Machine 363

to an information of diagram, that enumerates the sequence of operations along with the
necessary condition for their execution.

A special flow chart, developed specifically to define the “Digital Hardware Algorithm” is
called as an Algorithmic State Machine (ASM) chart. In fact, a sequential circuit is alternately
called as state machine and forms the basic structure of a digital system. A conventional flow
chart describes the sequence of procedural steps and decision paths for an algorithm without
concern for their timing relationship. The ASM chart describes the sequence of events as well
as the timing relationship between the states of sequential controllers and the events that
occur while going from one state to next state. The ASM chart is specifically adapted to
accurately specify the control sequence and data processing in digital systems, while considering
the constraints of available hardware.

9.2 THE ELEMENTS AND STRUCTURE OF THE ASM CHART
An ASM chart is composed of four elements. These are the “state box”, the “decision box”,

the “conditional output box” and “edges”.

State Boxes
State boxes describe a state of the ASM. In general an ASM is a sequential system. The

state box represents the condition of the system. The symbol for a state box is as follows:
Entrance Po int

O ptiona l S ta te
Number

State Nam e

Register O peration
or O pera tion name

or O utpu ts

Exit Po in t

R
Begin

S1 001

1

Fig. 9.1 (a) State Box Fig. 9.1 (b) Example of State Box

The state box has exactly one entrance point and one exit point. The state box also has
a name and is often assigned a number for clarity. Inside the state box we place the names
of the system outputs that must be asserted while the system is in that state. We can also
place variable assignments in the state box, in order to “remember” the fact that the system
has been in that state. This is useful in program design.

NOTE: Sequential systems are systems with memory; their output depends on their
input as well as their history. The historical information that the system stores is called a
‘state’. Combinational systems are the opposite, having no memory. Combinational systems
output depends only on present inputs.

Decision Boxes
Decision boxes are used to show the examination of a variable and the outcomes of that

examination. In this model the outcome of a decision is always either true or false. This

364 Switching Theory

means that there is always exactly one input to a decision box and exactly two exits from the
box. The exit points are always labelled “true” or “false” for clarity. When input condition is
assigned a binary value, the two exit paths are labelled 1 and 0. 1 in place of ‘True’ and 0
in place of ‘False’. The condition which is being examined is written inside the decision box.
The symbol for a decision box is shown here:

True

Exit-Po int if condition

Fa lse

Exit Po in t if condition Fa lse

Entry Po in t

Boolean cond ition to
be exam ined

Fig. 9.2 Decision Box

Note that the decision box does not imply a system state. When a decision box is
executed the decision is made and the system proceeds immediately to the next item in the
ASM chart.

Conditional Output Boxes
Conditional output boxes are used to show outputs which are asserted by the system “on

the way” from one state to another. The symbol for the conditional output box is shown here
in Fig. 9.3(A).

Register O peration o r
outputs to be asserted

Entry point

Exit po in t

01S 1

S 0 00

00

R1 1

In itial s ta te

1 Z

X

Fig. 9.3 (a) Conditional Box Fig. 9.3 (b) Use of Conditional Box.

There is always one entry and one exit point from a conditional output box. Inside the box
we write the name of the signal that must be asserted by the system as it passes from one state
to another. Input path to conditional box must come from an exit path of decision box.

Conditional output boxes do not imply a system state. We can put variable assignments
in the state box. Figure 9.3 (b) shows an example using conditional box. The first one in
diagram is initial state (Labled S0) system which attains certain conditions fulfilled before
starting the actual process. The control then checks the input X. If X = 0, then control
generates the Z output signal and go to state S1 otherwise it moves to next state without
generating Z. R1 ← 1 in state box S1 is a register operation that loads R1 by 1.

Algorithmic State Machine 365

Edges are used to connect other ASM chart elements together. They indicate the flow
of control within the system. The symbol for an edge is as follows:

Note that the edge must always indicate which direction is being taken, by using one or
more arrow heads.

9.2.1 ASM Block
An ASM block is a structure that contains one state box and all decision boxes and

conditional boxes connected to its exit path spanning just before another state box. An ASM
block has only one entry path put number of exit paths represented by the structure of
decision boxes. Fig. 9.4 shows an ASM block, in ASM chart by dashed lines around it.

X

Y

1

0 1

S0 000

R
Start

1 0

R2 0

R3 1

0

S1 001
S2 010

Valid

An AS M B lock

Fig. 9.4 Example of ASM Block-Structure enclosed by dashed line represent an ASM block.

Each ASM block is an ASM chart represents the state of system during one clock pulse. The
operations specified by the state box, conditional boxes, and decision boxes are executed during
a common clock pulse while the system is in S0 state. The same clock pulse is also responsible
to move the controller to one of the next states, S1 or S2 determined by binary status of X and
Y. A state box without any decision or conditional boxes constitutes a simple block.

9.2.2 Register Operation
A digital system consist of one or more registers for data storage. Thus operation to be

performed on data is actually performed on the register that stores the data. A register is a
general designation which includes shift registers, counters, storage registers, and single Flip-
Flops. A single Flip-flop is identified as 1-bit register. A register is designated by use of one
or more capital letters such as A, B, RA, RB, R1, R2. In practice most convenient designation
is letter R along with numbers such R1, R2, ... Rn.

366 Switching Theory

Register operations can be increment, decrement, shift, rotate, addition, cleaning, copying,
data transfer etc. The data transfer to a register from another register or from the result of
mathematical operations etc. are shown (or symbolized) by directed arrow whose head is
towards target register and tale is towards source register. Fig. 9.5 summarizes the symbolic
notations for some of register operations.

Symbolic Initial Initial Value Value of Description
Notation Value of of Source Target of Operation
of Operation Target Register Register

Register After
Operation

A ← B A = 01010 B = 00000 A = 00000 Copy the content of register B
into register A

R1 ← 0 R1 = 11111 – R1 = 00000 Clear register R1

A ← A + B A = 01010 B = 00101 A = 01111 Add the contents of register B
to register A and put result in
A.

R ← R – 1 R = 01101 – R = 00100 Decrement register R by 1.

R ← R + 1 R = 00101 – R = 00110 Increment register R by 1.

“Shift Left A” A = 10111 – A = 01110 Shift content of A to left by
1-bit

“Rotate A = 10111 – A = 11011 Rotate content of A to right by
 Right A” 1-bit

R ← 1 R = 01010 – R = 00001 Set content R to 1

Fig. 9.5 Symbolic Representation or register operation.

Assume 5-bit register to understand the operations. Note that shift and rotate operation
are not same. Shift left means MSB ← MSB-1, MSB-1 ← MSB-2, ..., LSB + 1 ← LSB,
LSB ← 0. If rotate right operation then MSB ← ISB, MSB-1 ← MSB, ... LSB ← LSB + 1. It
is clear that in shift operation loose MSB if left shift or LSB if right shift because as above
explained MSB was overwritten by content of MSB-1, and prior to this value of MSB was not
saved. And that’s why a 0 is inserted at LSB. In rotate operation we don’t loose the status
of bits. If we rotate left then status of MSB is transferred to LSB and then it is over written
by the value of MSB-1.

Equipped with this many knowledge and understanding we are able to draw and understand
the simple ASM charts and with analysis and synthesis we can figure out the similarity of
ASM charts with that of state diagram.

In the next section (art 9.3) we present some simple examples to give you a feel of ASM
chart and its representation.

9.2.3 ASM Charts
Example 9.1. 1-Bit Half Adder: The half adder take the two data bits if START input

is activated otherwise it remains in initial state. The data bits are read into register R1 and
R2 and sum and carry bits are maintained in register R3 and R4 respectively ASM chart for
this task is shown into Fig. 9.6.

Algorithmic State Machine 367

S0 00

In itialS ta te

Start

R4

R3

SUM

0

1

O

1

1

S1 01

0

R Input bit A1 ←

R Input bit B2 ←

R R E X-O R R 3 1 2←

R R A ND R4 1 2←

CARRY

Fig. 9.6 ASM Chart for 1-bit Half Adder.

368 Switching Theory

By observing the ASM chart of Fig. 9.6 we see that there are three state boxes which
contributes to three ASM blocks. And we know that the state box and conditional blocks are
executed by one common clock pulse corresponding to the state defined by state box in the
particular ASM block.

9.2.4 MOD-5 Counter
Example. We present counter having one input X and one output Z. Counter will have five

states, state O (i.e., S0) to state 4 (i.e., S4) and it moves to next state only and only if input
X = 1 at the time of arrival of clock pulse. If X = 0 at this time counter does not moves to next
state and maintains its current state. Also when in state S4 then X = 1 at clock pulse moves
the system to next state S0 i.e., to initial state so that counting can be restarted from 000. The
output Z produces a pulse when X = 1 at 5 clock pulses or when state changes from S4 to S0.

In itial S tate

So 000

1
Z

×

×

S3 011

0

1
S4 100

1

0

S2 1 010

×

S1

0
×

001

×

0

0

Fig. 9.7 ASM chart for MOD-5 Counter.

Note that in the ASM chart shown in Fig. 9.7 state boxes are blank and does not specify
any operation. But the blocks corresponding to these states contains decision boxes which
means that only operation to be done in these states are to test the states of input.

Now let us consider the synthesis and we wish to use D flip flop. The 3D-Flip-Flops
together are used to assign the 3-bit binary name to states. We know that for D flip-flops
excitation input Di should be same as next state variable Yi. By simply observing the assigned
state on ASM chart of Fig. 9.7, we carry out the task.

Let the three outputs of flip-flops are Y2Y1Y0 i.e., the three bit binary name for state.
(1) First finding the changes in bit Y0 in ASM chart. When present state is 000 or 010

then the next value of Y0 has to become 1. Thus

D0 = Y0 = X (0, 2) + (5, 6, 7)Σ Σφ
Similarly for Y1 and Y2.

(2) The next value of Y1 has to become 1 only for the present states 001 and 010. So

D1 = Y1 = X (1, 2) + (5, 6, 7)Σ Σφ

Algorithmic State Machine 369

(3) Similarly, next value of Y2 has to become 1 only for the present state 011. So

D2 = Y2 = X (3) + (5, 6, 7)Σ Σφ
(4) Similarly next value of Z has to become 1 only and only for present state 100. So

Z = X (4) + (5, 6, 7)Σ Σφ

Note that state 5, 6, 7 i.e., 101, 110, 111 never occurs and that’s why these three states
are written Σφ(5, 6, 7) .

Thus the synthesis equations can be summarized as

D0 = Y0 = X. (0, 2) + (5, 6, 7)Σ Σφ

D1 = Y1 = X. (1, 2) + (5, 6, 7)Σ Σφ
D2 = Y2 = X. (3) + (5, 6, 7)Σ Σφ

and Z = X. (4) + (5, 6, 7)Σ Σφ
Here input X is ANDed with all the expressions for the excitations. In this system input

X is used to enable the counter. Thus excitation equations can be given as–

D0 = Y0 = X Y Y Y X Y Y Y2 1 0 2 1 0+
D1 = Y1 = X Y Y Y Y Y Y X2 1 0 2 1 0+
D2 = Y2 = X Y Y Y2 1 0

and Z = X Y Y Y2 1 0

Where state S0 is represented by Y Y Y2 1 0 as its name assigned was 000. In fact if value
of state value is 0 then it is represented by Yi and if it is 1 then use Yi.

Similarly the states are represented for S1 to S4.

9.3.5 Sequence Detector
Example. We now consider a sequence detector to detect “0101” and allowing the

overlapping. This example is chosen to illustrate the similarity between state diagram. If we
have already drawn a state diagram then drawing the ASM chart is a very easy job. The state
diagram to detect 0101 is shown in Fig. 9.8.

1/1

0/0

1/0

S0

S11/0

1/0

0/0

0/0

S2

0/0
S3

Fig. 9.8 State Diagram of 0101 sequence Detector with overlapping.

370 Switching Theory

Number Marked with segments connecting two states are value of input and output and
written as Input/output. If its 1/0 means Input-1 then Output is 0, while in this state.

It is evident from the state diagram that there are four states S0, S1, S2, S3. So 2-bit
binary code can be associated to these states to identify the particular state. Thus we use two
D flip-flops to assign binary number Y1Y0 to the states. As earlier indicated use of D Flip Flop
makes the excitation table same as transition table because for D flip-flop Di = Yi. In fact we
carry out these exercise after drawing ASM chart, but here we did it earlier to reflect the
similarity between ASM chart and state graph as major difference between the two is indication
of timing relation in the drawing. Below is the ASM chart i.e., Fig. 9.9 for the problem.

Z

0

11S3

1

1

00S0

S 1

0

1
S2

01

×

×

×

0

1

x

10

0

Fig. 9.9 ASM chart for 0101 Sequence Detector.

Note that, as in earlier examples, here also X is input through which the sequence is
applied to the system. Z is output which goes high when the intended sequence is detected.
Note the similarity between the state diagram and ASM chart. A close inspection of two
graphs, shows that for every state of state diagram, there exist one ASM blocks and there
is one state box per ASM block in the ASM chart. Thus there are four ASM blocks in Fig.
9.9 each of which contains a decision box and last one contains a conditional box also in

Algorithmic State Machine 371

addition to state box. We again assert the fact that all the operations owing to an ASM block
are to be completed in the same clock period. We now consider synthesis to find out the
equations for excitations.

Here also we use observation (as was done in example 2) to determine that when next
state variables Y0 and Y1 become 1. Thus

D0 = Y0 = X (0, 2)Σ

∴ D0 = Y0 = X Y Y X Y Y1 0 1 0+

as the S0 state = 00 = Y Y1 0

S2 state = 010 = Y Y1 0

If input X = 0 make next state to comes then input = X and if input X = 1 causes the
next state then input = X.

In equation for D0, X Y Y1 1 shows that next state variable Y0 = 1 when X = 0 and present

state is S0 (i.e., 00). Similarly X Y Y1 0 means next state variable Y0 = 1 if the input X = 0 while
in state S2 (i.e., 10). See the ASM chart to verify the statements.

Similarly D1 = Y1 = X Y Y X Y Y1 0 1 0+

and Z = XY1Y0

9.3 TIMING CONSIDERATIONS
The timing of all the registers and flip-flops is controlled by a master clock generator.

The clock pulses are equally applied to the elements (i.e., registers, flip-flops) of both data
processing and control subsystems. The input signals are synchronized with the clock as
normally they happen to be the output of some other circuit utilizing the same clock. Thus
the inputs change the state during an edge transition of clock. In the similar way, the outputs,
that are a function of present state and synchronous inputs, will also be synchronous.

We re-insert that major difference between a conventional flow chart and ASM chart is
in defining and interpreting the timing relation among the various operations. Let us consider
the ASM chart shown in Fig. 9.4. If it would be a conventional flow chart, then the listed
operations within the state, decision and conditional boxes are executed sequentially i.e., one
after another in time sequence. Alternately saying, at one clock pulse only one of the boxes
will be executed, where the box may be a state box or a decision box or a conditional box.
Thus a total denial of timing relation among the various activities. In contrast to it, an entire
ASM block is treated as one unit. All the activities specified within the block must happen
in synchronism with the transition of positive edge of the clock, while the system changes
from current state to next state. Here it is assumed that all the flip-flops are positive edge
triggered. For illustration purpose consider the ASM chart shown in Fig. 9.4 and Fig. 9.10
shows he transition of control logic between the states.

Next S ta te
(S o r S)1 2

Presen t S tate
(S)0

Positive transition
o f Pu lse

C lock

Fig. 9.10 Transition between States.

372 Switching Theory

In order to understand the state transition at the positive edge of clock refer the
Fig. 9.4 and 9.10 simultaneously along with the following discussion.

The arrival of first positive transition of clock, transfers the control subsystem into S0
state. The activities listed in various boxes of ASM block, corresponding to S0 state can now
be executed, as soon as the positive edge of second clock pulse arrives. At the same time
depending upon values of inputs X and Y the control is transferred to next state which may
be either state S1 or State 2. Referring to the ASM block indicated by dashed line in Fig. 9.4
we can list out operation that occur simultaneously when the positive edge of second clock
pulse appears. They are–

Recall that system is S0 state before second clock pulse

(1) Register R1 is cleared.

(2) If input X is 1, the output signal VALID is generated and the control enters in S2
state.

(3) If input X is 0, then the control tests the input Y.

(4) If input Y is 0 register R3 is set to one. If input Y is 1 register R2 is cleared. In
either the case next state will be S1 state.

Observe the ASM chart closely (in Fig. 9.4), and we find that next state is decided by the
status of input X only. If X = 1 then next is S2 state and when X = 0 then weather input
Y = 0 or 1 the next state will always be S1. Also note that the operation in the data processing
subsect and change in state of control subsystem occur at the same time, during the positive
transition of same clock pulse. We now consider a design example to demonstrate timing
relation between the components of ASM chart.

Example 9.4. Design a digital system having one 4-bit binary counter ‘C’ whose internal
bits are labelled C4 C3 C2 C1 with C4 MSB and C1 as LSB. It has two flip-flops named ‘X’ and
‘Y’. A start signal incrementing the counter ‘C’ by 1 on arrival of next clock pulse and continues
to increment until the operation stops. Given that the counter bits C3 and C4 determines the
sequence of operation. The system must satisfy following–

(1) Initiate the operation when start signals = 1 by clearing counter ‘C’ and flip-flop “Y”,
i.e., C = 0000 and Y = 0.

(2) If counter bit C3 = 0, it causes E to cleared to 0 i.e E = 0 and the operation proceeds.

(3) If counter bit C3 = 1, E is set to 1 i.e. E = 1 and

(a) if C4 = 0, count proceeds.

(b) if C4 = 1, F is set to 1 i.e. F = 1 on next clock pulse and system stops counting.

Solution. ASM chart for the given problem is shown in Fig. 9.11. A close inspection
reveals that

When, no operation, system is in initial state S0, and keep waiting for start signals ‘S’.

When S = 1, counter C = 0000 and Y = 0 and simultaneously control goes to S1 state.
It means clearing of counter ‘C’ and flip-flop ‘Y’ occurs during S0 state.

The counter is incremented by 1 during state S1, on the arrival of every clock pulse.
During each clock pulse simultaneously with increment during same transition of clock, one
of the three possibility is tested to determine the next state:

(1) Either X is cleared and control stays at S1 (C3 = 0).

Algorithmic State Machine 373

or
(2) X is set (X = 1) and control maintains S1 state (A4 A3 = 10).

or
(3) X is set and control advanced to state S2 (A4, A3 = 11).

When in S2 state flip-flop ‘Y’ is set to 1 and control move back to its initial state S0. The
ASM chart consist of three blocks, one external input S, and two status inputs S4 and S3.

× 0←

S

In ita l S ta te

S 0

0

1

× 1←

1

0

C 3
0

S 2

1

C 4

C C+1←

Y 1←

Y 0←

S1

C 0←

Fig. 9.11 ASM chart for example 9.4.

Example 9.5. Design a digital system for weight computation in a given binary word.
Solution. The weight of a binary number is defined as the number of 1’s contained in

binary representation. To solve the problem let the digital system have
1. R – A register where binary work is stored.
2. W – A register that counts number of 1’s in binary number stored in R.
3. F – A flip-flop.

The operation of the system is to shift a single bit of R into F. Then check the output
of the F. If it is 1 increment count in W by 1. If it is O no increment in W. The moment all
the bits are shifted and tested operation stops and W contains the weight of the given word.

374 Switching Theory

The ASM chart for this problem is shown in Fig. 9.12. Note that the system have 3 inputs
S, Z and F. Z is used to sense weather all the bits in register R are O or not. Z = 1 indicates
that register R contains all zeros, and the operation must stop.

Initially machine is in state S0 and remains is state S0 until the switch S (i.e., start
signal) is made 1. If S0 = 1 then in S0 state, the clock pulse causes. Input word to be loaded
into R, counter W to have all 1’s and machine to transferred to state S1.

In state S1 a clock pulse causes two works simultaneously. First it increments W by 1.
If W is incremented for the first time, then the count in W becomes all 0’s as initially it was
all 1’s second it tests Z. If Z = 0 machine goes to state S2. If Z = 1 machine goes to state S0
and count in W is weight of the binary word.

S0 00

In itial S tate

Start
O

1

1

S1 01

R Input ←

W All 1 ’s ←

W W + 1←

Z

Sh ift R into F

S2 10

S3 11

F

1

0

Fig. 9.12 ASM chart for weight computation.

Algorithmic State Machine 375

In state S2 a bit of register R is shifter into flip-flop F, and machine goes to state S3.

In state S3, shifted bit in F is tested. If f F = 0 the machine goes to state S2 to shift next
bit into F. If F = 1 it goes to state S1 to increment the count in W.

9.4 DATA PROCESSING UNIT
Once the ASM chart is prepared, the system (or machine) can be designed. The design

is splitted in two parts:

(a) Data Processing Unit

(b) Control Unit.

The data processing unit contains the element that performs the operations like increment
the count, shift a bit etc.

The central unit is the subsystem that is responsible to move the machine from one state
to another, according to the conditions specified by ASM chart.

In this section we are concerned with the design of data processing unit only.

Example 9.6. Design data processing unit for binary weight computation, discussed in
Examples 9.5.

Solution: Proposed data processing unit is shown in Fig. 9.13. The control sub-system
has 3 inputs S, Z, F as discussed in Example 9.5. It has four control signals C0, C1, C2, C3
corresponding to states S0, S1, S2, S3 respectively (refer to ASM chart shown in Fig. 9.12).
We advise the readers to go through Example 9.5 again.

Next shown in figure is a shift register R. Serial input ‘0’ is a data input. Each time data
in R is shifted left this input inserts a 0 at LSB. A HIGH on SHIFT LEFT input shifts the
data present in R to left by 1 bit and loads a serial 0 at LSB. A HIGH on LOAD INPUT DATA
loads the INPUT DATA into R. This is the binary word whose weight is to be calculated. This
word is loaded as parallel data into R.

A NOR gate is used to determine weather all the bits of R are 0 or not. All the bits of
R are brought to the input of NOR. As soon as all the bits or R become O output of NOR goes
HIGH. If any of the bit of R is 1 output of NOR remains LOW. Output of NOR is feeded as
input Z to controls, where it is checked for 0 or 1.

A flip-flop F is connected a MSB of R. This flip-flop is used to collect each shifted bit from
register R. Every time R receives shift left command, its MSB is shifted out and is received
in flip-flop F. The output of flip-flop is feeded to controls as input F, where it is checked for
1 or 0.

Last in figure is counter W which is yet another register acting as counter. A HIGH on
LOAD INPUT loads all 1’s into W. A HIGH INCREMENT increments the count in W by 1.

Initially the system is in state S0 (refer ASM chart of Fig. 9.12 along with Fig. 9.13). As
soon as START = 1, C0 is activated. This causes LOAD INPUT DATA signals of both R and
W to go HIGH. Thus binary work is loaded into R and initial count is loaded into W. At the
same time the machine moves to state S1.

In state S1 signal C1 is activated. This causes INCREMENT signal of W to go HIGH and
consequently the count in W is incremented by 1. When it is incremented for the first time.
All 1’s become all 0’s. At the same time input Z is tested by controls. If Z = 1 control goes
back to state S0. If Z = 0 control goes to state S2.

376 Switching Theory

W

‘CP ’-CLO CK P ULS E

CP INP UT DATA

LOA D INP UT DATA

SHIFT LEF T

SER IAL INPU T ‘0’

SH IFT REG IST ER ‘R ’F
Q D

Flip
Flop
F CP

Z = 1 if R = 0

F

Z

S C 0

C 1

C 2

C 3

START

INCR EM ENT

LOA D INP UT DATACO UNTER W

CP

Input a ll 1 ’s

CO NTR OL

Fig. 9.13 Data processing unit for Binary weight computation.

In state S2 the signal C2 is activated. The C2 causes SHIFT LEFT of R to go HIGH and
enables the flip-flop F. Thus the content of R shifted to left by 1-bit. Hence MSB of R is shifted
out and is collected by F and at the same time a 0 is inserted at the LSB through serial input.
Now the machine moves on to state S3.

In state S3 the output of F is tested by control subsystem. If F = 1 machine should go
to state S1 i.e., C1 to be activated next. If F = 0 machine should go to state S2 i.e., C2 to be
next. Since all these activities are internal to control subsystem, C3 is not connected to any
element of data processing unit. In fact C3 is used to activate the signals C1 or C2 and is
processed internally by control unit.

9.5 CONTROL DESIGN
As earlier stated the job of the control subsystem is to move the machine from one state

to other state according to inputs given to it. In general variables defined by the “decision
boxes” in an ASM chart are treated as inputs to the control subsystem.

Algorithmic State Machine 377

There are many methods to obtain a control subsystem according to the ASM charts.
Here we consider only two methods:

(i) Multiplexer Controls

(ii) PLA controls.

9.5.1 Multiplexer Control

In this approach we use the multiplexers to realize the control subsystem. The number
of multiplexers depends upon the number of states in ASM chart. For example if there are
4-states then we need 2-bit binary number to specify these states uniquely. So we take two
multiplexers, one for each bit of representation. In general, if ‘n’ is number of multiplexers
then 2n > No. of states.

The type of multiplexer also depends upon the number of states. If there are four states
in ASM chart then the multiplexer should be a 4 × 1 multiplexer. Alternately

Number of MUX inputs > No. of states

In general design the output of multiplexers denotes the PRESENT STATE variable as
these outputs reflect current status of control unit. The inputs to multiplexer represents the
NEXT STATE variable. It is because if these inputs are changed output of multiplexers may
change and thus we say that the state is changed.

To being with we consider our example of binary weight computation illustrated in
Examples 9.5 and 9.6. We urge the readers to go through these to examples carefully before
proceeding further.

Example 9.7. Design the control system for binary weight computation, by using
multiplexers.

Solution. The ASM chart for binary weight computation is drawn in Fig. 9.12. Referring
to the chart we find that there are 4 states. So,

2n > 4

or n > 2

So we take 2 multiplexers (n = 2) MUX 1 and MUX 0. Since there are 4 states we select
4 input multiplexers i.e., 4 × 1 multiplexers.

After selecting the multiplexers next step is to draw state table, as shown in Fig.
9.14(a). The first 3 columns of the tables shows present states, next state and the inputs
that causes the next state. Last column of the table is multiplexer input. As earlier stated
multiplexer inputs are next state variables. Thus entries in this columns are made by
making observations on inputs and next state. For example, if present state is S0 i.e.,
multiplexer output Y1 = 0 and Y0 = 0, then status of switch S decides the next state. If
S = 0 the next state is S0 i.e., Y1 = 0 and Y0 = 0. If S = 1 the next state is S1 i.e., Y1 = 0
and Y0 = 1. Hence when S = 0, Y0 = 0 and when S = 1, Y = 1, Y0 = 0 so we say Y0 = S.
Since Y1 = 0 always the first entry in MUX inputs column is 0 S. Consequently input I0 of
MUX 1 must be connected to 0 and input I0 of MUX 0 must be connected to S. The same
is shown in Fig. 9.14(b). Readers are advised to verify all the rows of state table in similar
way.

378 Switching Theory

Present State Inputs Next State MUX Inputs

Y1 Y0 S Z F Y1 Y0 D1 = Y1 D0 = Y0

MUX 1 MUX 0

S0 0 0 0 × × 0 0 0 S

1 × × 0 1

S1 × 1 × 0 0

0 1 × 0 × 1 0 Z 0

S2 1 0 × × × 1 1 1 1

S3 1 1 × × 0 1 0

× × 1 0 1 F F

(a) State Table

2 to 4
L ine
Decoder

C 0

C 1

C 2

C 3
D 0 Y 0

CP

D 1 Y 1

CPM UX 1

I0

I1

I2

I3

0

Z

1

F

I0

I1

I2

I3

S

0

1

F

M UX 0

S 1 S0

(b) Logic Diagram

Fig. 9.14 Control Subsystem for binary Weight computation.

Fig. 9.14 (b) shows the complete control design for weight computation. The outputs of
multiplexers are feeded to a 0 flip-flops, whose outputs Y1 and Y0 are brought back to select
lines S0 and S1 of multiplexers. Y1 and Y0 are decoded further by using 2 to 4 line decoder
to generate the control signals C0, C1, C2, C3 corresponding to states S0, S1, S2, S3 respectively.

To understand the operation let us consider that control is in sate S0 so Y1 = 0 and
Y0 = 0 i.e., S1 = S0 = 0. Sine S1, S0 = 0 0, input I0 of both the multiplexers are selected. As
long as S = 0, both Y1 = Y0 = 0 and machine remains is state S0. As soon as S = 1 output

Algorithmic State Machine 379

of MUX becomes 1 and consequently Y1 = 0 and S0 = 1. Thus signal C1 is activated and select
inputs become S1 = 0 and S0 = 1. Hence inputs I1 of both multiplexers selected. Note that

by activation of C1 state S1 has arrived. At the input I1 of MUX 1, Z is connected whose value
is responsible to make Y1 = 0, Y0 = 0 or Y1 = 1, Y0 = 0. Thus input Z is tested in state 1,
which was to be done in S1 according to the ASM chart shown in Fig. 9.12. Like wise the
complete operation can be verified.

9.5.2 PLA Control
Use of PLA to realize, control subsystem makes the system more compact and efficient.

PLAs have internal AND-OR array i.e., the outputs of PLA represent sum of product. Thus,
overall strategy is to prepare on SOP equation for each bit of state representation. For
example, if 4-states are there we need two bits of representation. Thus we need two SOP
equations. After getting the SOP equations next step is to prepare PLA program table. Such
a table is a input-output table according to which PLAs are programmed.

Example 9.8. Design a control system for binary weight computation, by using the PLA.

Solution. We advise the readers to go though the ASM chart given in Fig. 9.12 and
multiplexer control shown in Fig. 9.14.

We now obtain two SOP equation for next state variables Y1 and Y0 according to state
table given in Fig. 9.14(a). Let C0, C1, C2, C3 are signals corresponding to states S0, S1, S2,
S3

Y1 = Y Y Z Y Y Y Y F1 0 1 0 1 0+ +

or Y1 = C Z C C F1 2 3+ +

as (Y1 Y0 = 0 1 means C1 and Y1 Y0 = 11 means C3)

Similarly Y0 = Y Y S Y Y Y Y F1 0 1 0 1 0+ +

= C0S + C2 + C3F

The PLA program table and PLA control block is shown in Fig. 9.15. Let us examine
the PLA program table. Note that Y1Y0 in the input side of table represents the present
state and Y1Y0 in the output side represents the next state. Further all entries at the
input side is made for product terms and at the output side entries are results of sum of
products.

First four rows in the program table are simply showing the values of Y1Y0 and
corresponding state to be excited. For example if present state is Y1 = 0 and Y0 = 0, then
if it is state S0 and signal C0 is activated. This is shown in first row. At the output side
Y1Y0 shows next state. Now observe the third row, which shows that machine is in state
S2 so C2 is activated. But according to the ASM chart shown in Fig. 9.12, if the machine
is in state S2 it goes to state S3 without testing any input. Hence at the output side of
table we marked Y1 = 1 and Y0 = 1. Note that Y1 and Y0 on the output side are filled
up according to the two SOP equations obtained in the beginning. In fact the first four
rows are used to show what will be the control signal to be activated when machine is
in a state.

380 Switching Theory

 Product Inputs Outputs

Terms Y1 Y0 S Z F Y1 Y0 C0 C1 C2 C3

C0 = Y Y1 0 0 0 1 0 0 0

C1 = Y Y1 0 0 1 0 1 0 0

C2 = Y Y1 0 1 0 1 1 0 0 1 0

C3 = Y1Y0 1 1 0 0 0 1

C1Z = Y Y Z1 0 0 1 0 1 0 0 1 0 0

C3F = Y1Y0F 1 1 0 1 0 0 0 0 1

C0S = Y Y S1 0 0 0 1 0 1 1 0 0 0

C3F = Y1Y0F 1 1 1 0 1 0 0 0 1

(a) PLA Program Table

Q D 1

CP

Q D 0

CP

Y = D0 0Y0

Y1
Y = D1 1

PLA

F

Z

S

C 3

C 2

C 1

C 0

(b) Logic Diagram

Fig. 9.15 Control subsystem for weight computation using PLA.

Algorithmic State Machine 381

The rest of the four rows in PLA program table shows the input to be tested when machine
is in a state and what should be the next state if testing is true. Consider the 7th row having

product terms entry C0S = Y Y S1 0 . This tests the input S when machine is in state S0. At the
input side Y1 = Y0 = 0 to show state S0 and entry S = 1 is status of input S . At the output side
in this row C0 = 1 as machine is in state S0. Next Y1 = 0 and Y0 = 1 at the output side indicates
that since input S = 1, the machine must go to state S1 at next clock pulse.

9.6 EXERCISES
1. Draw the ASM chart for a binary multiplier.

2. A binary stream is arriving serially. Stream is such that LSB arrives first and MSB
arrives last system requirement is such that the system must output the 2’s
complement of each incoming bit serially. Draw the ASM chart and design control
subsystem and data processing subsystem for this system.

3. Draw the ASM chart to compare two 4-bit binary datas.

4. Draw the ASM chart for 1-bit full adder.

5. Draw the ASM chart for 2-bit binary counter having one enable input.

6. Design a synchronous state machine to generate following sequence of states.

7 3

5

1

7. Draw the ASM chart and state diagram for the circuit shown.

Inpu t

C lock

Q

QD O utpu t

Q

QD

8. Draw the ASM chart and state diagram for decade counter.

9. Draw the ASM chart and state diagram to convert two digit hexadecimal number
into packed BCD number.

10. Draw the ASM chart and state diagram for 1 bit full subtractor.

382 Switching Theory

10
CHAPTER

382

SWITCHING ELEMENTS AND
IMPLEMENTATION OF LOGIC GATES

10.0 INTRODUCTION
In earlier chapters we have studied the basic logic gates and seen how they can be

realized using switches in ON/OFF fashion (or TRUE/FALSE). The semiconductor devices
can be used to replace these switches and can realize these logic functions. A circuit employing
semiconductor devices to realized logic functions is called as digital circuit. Since
semiconductor devices are used to replace the switch, these devices and their switching
characteristics are discussed first in this chapter. Infact using semiconductor devices offers
several advantages, that will be apparent throughout this chapter.

Advent of semiconductor IC technology in late 1950’s and early 1960’s made it possible
to fabriate large number of circuit components on a small piece of semiconductor, whose area
is few mm2. Thus a large number of circuits could be integrated on small piece of
semiconductor. This small piece of semiconductor is called as CHIP and a chip with circuits
fabricated on it is chritened as Integrated Circuit or IC in short. Various types of digital
circuits are available in form of ICs. In particular, advent of MOS technology made more
number of components and logic circuits on one IC. Thus giving rise to very large scale
integration which resulted in high capacity memory devices, microprocessor and many other
complex circuits available on a small chip.

10.1 FUNDAMENTALS OF SEMICONDUCTORS AND SEMICONDUCTOR SWITCHING
 DEVICES

10.1.1 Semiconductors
By the idea of electrical properties of solids, we know that materials are broadly

categorized as conductor, semi conductor, and insulator, on the basis of their conductivity.
SEMI CONDUCTORS are those which have electrical conductivity intermediate to that of an
conductor and insulator. In fact in a semiconductor the filled energy band, called valance
band and the unfilled energy band, called conduction band are separated by a small energy
gap, called band gap energy EG.

By providing energy from an external source, the charge carriers at filled band can be
raised to conduction band. Thus the materials can start conduction.

There are numerous elemental and compound semiconductors are available out of
which silicon ad Germanium are two common elemental semiconductors. The silicon is used
mostly because energy gap of silicon is a bit larger than the germanium thus providing a
good operational mechanism, as we will see later.

Switching Elements and Implementation of Logic Gates 383

Fig. 10.1 Energy Band Diagram for semiconductors

Both the silicon and germanium atoms have 4 electrons in their outer shell, which forms
covalent bands with neighbouring atoms in a semiconductor material. This is shown in Fig.
10.2. By providing energy from an electrical source these covalent bands can be brocken and
free charge carriers are available for conduction. Many of these covalents bonds are broken
even at room temperature so at room temperature semiconductors (shorthand SCs) can behave
some what like conductors. A semiconductor in its extreme pure form is called as intrinsic
semiconductor. At room temperature conductivity of intrinsic semiconductors are poor. Thus
to increase the no. of free charge carriers (or conductivity) it usual to add some impurity to
intrinsic semiconductors. This dramatically increases the conductivity of semiconductors, and
make it suitable for various applications. A semiconductor with impurity added to it is called
as extrinsic semiconductor. The process of adding impurities to semiconductors is called
doping. These extrinsic semiconductors are also called as doped semiconductors.

Fig. 10.2 Formation of Covalent Bonds in Semiconductor.

In a semiconductor whenever a covalent bond is broken the electron gets free from its
parent atom and leaves a vacancy, thus a +ve charge equal to the magnitude of electron
charge is left with the parent atom. Thus the atom is ionized. An electron from neighbouring
atom can fill this vacancy, but creates a vacancy there, if this process repeats this vacancy
can be moved from one place to another and thus giving a mechanism of conduction. This
vacancy is called hole which has an equal but opposite charge to that of an electron. In a
semiconductor conductor both holes and electrons provide the conduction mechanism. Infact
free electrons travels in conduction band where hole movement is due to the movement of
electrons in valence band. Both the charge carriers travel in a direction opposite to each
other but constitute current in same direction.

In a semiconductor both electrons and holes moves randomly through the semiconductor
crystal during which an electron can fill a hole causing free electrons and holes to disappear.

384 Switching Theory

This process is called Recombination. In a semiconductor the rate of charge carrier generation
(generation of both electrons and holes) is equal to the rate of recombination and remains
constant in time.

In an intrinsic semiconductor the number of free electron (n) and free holes (p) is same
i.e.,

n = p = ni ...(10.1)

where ni is intrinsic concentration of holes or electrons in intrinsic semiconductor. The ni
can be approximated as

ni
2 = BT per cm3 E K T 3G Be− /(10.2)

where B = material constant = 5.4 × 1031 for sillicon

T = Temperature in Kelvin

EG = Band gap energy of SC = 1.12 eV for silicon

KB = Boltzman constant = 1.38 × 10–23 joules/kelvin

= 8.62 × 10–5 eV/K

By using eqn (10.2) for sillicon we get that at room temperature i.e., at 27°C we get
approximately 1.51 × 1010 free carrier/cm3. A silicon crystal has 5 × 1023 atoms/cm3. So
ni = 1.51 × 1010 shows that at room temperature only one of every billion atom is ionized.

In a semiconductor recombination causes a pair of free charge carriers, called electron
hole pair (EHP) to disappear and breaking of a covalent gives an EHP. Also breaking of a
covalent bond ionizes an atom by freeing an electron, for this reason generation of free
charge carriers is called ionization process.

In a semiconductor movement of charge carrier can be obtained by two mechanism
diffusion and drift. If there is uniform concentration of charge carriers throughout the
crystal of a semiconductor there is not net flow of charges i.e., no current. If in one portion
concentration is high and in another portion concentration is low then the charge carriers
will diffuse to low concentration region and thus constituting diffusion current ID. If an
electric field is applied to semiconductors free electrons and holes are accelerated and
acquires a velocity called drift velocity and is given as

Vdrift = µE ...(10.3)

where µ = mobility of charge carriers in cm2/V.sec

E = applied electric field in V/Cm

Vdrift = drift velocity in cm/sec

Note that mobility of a hole is lower than that of an electron.

The electric current caused by drift velocity is called as drift current.

As earlier stated, to increase the conductivity of a semiconductor doping is done. There are
two type of doping is used to increase free charge carriers; depending upon weather we want
to increase no. of holes or no. of electrons. In a doped semiconductor if impurity increases
no. of free-electrons it is called n-type semiconductor and in which case electrons becomes
majority carrier and holes become minority carrier. If impurity increases no. of free holes
it is called p-type semiconductor. To obtain n-type semiconductor a pentavalent impurity
(e.g., antimony or phosphorous with 5 electrons in outer orbits) is introduced. Out of 5
valence electrons of impurity atoms four electrons forms covalent bonds with surrounding
semiconductor atoms and one electron remains-free. Thus the free electron can be donated

Switching Elements and Implementation of Logic Gates 385

for current conduction. For this reason such impurity atoms are called donor atoms. Similarly
introducing a trivalent impurity (e.g., boron or medium) gives a p-type semiconductor in which
holes are majority carriers. In this case only three electron exists in outer orbits which form
covalent bonds with three neighbouring atoms. But this impurity is having a vacant position
i.e., hole which is free and can not be used to form fourth covalent bond in lattice structure.
Thus a free hole is created. But this impurity can accept an electron to form fourth covalent
bond causing hole movement. For this reason trivalent impurities are also called acceptor
impurities.

“It should be noted that p-type or n-type semiconductors are electrically natural. The
majority carriers in each type are neutralized by bound charges associated with the impurity
atoms, see Fig. 10.3.

10.1.2 Semiconductor Diode or PN Junction
When a PN-junction is formed then due to concentration gradient, the charge carriers

diffuses on either side of the junction. But soon after crossing the junction the free charge
carrier disappear by re-combination. This leaves the ion without neutralizing carrier. The
process of diffusion continue until a potential barrier against the flow of charge carrier is
formed. This is shown in Fig. 10.3. The PN junction in open circuit is sold to be in equilibrium.
Since the recombination occur immediately after the junction, this region is out of or
depleted of free charge carrier and thus it is called depletion region. It is in this region
the potential barrier is built up and the charge carrier must overcome this barrier to cross
the junction. Symbol of PN junction diode is shown in Fig. 10.4.

Fig. 10.3 A PN Junction Diode Under Open-Circuit Terminals

Fig. 10.4 Symbol of PN Junction Diode.

When no external voltage applied the inbuilt junction voltage VO, shown in Fig. 10.3 is
given as

VO = V N N
T

A Dlog .
e

in2

F
HG

I
KJ ...(10.4(a))

where VT =
K TB.

q = Thermal voltage ...(10.4(b))

386 Switching Theory

q = electronic charge

NA, ND = Doping concentration on p-side and n-side respectively.

For silicon the junction inbuilt voltage VO typically varies between 0.6 to 0.8 V.

Let us connect a dc supply VF to the diode such that positive terminal of supply is
connected to p-type and negative is connected to n-type as shown in Fig. 10.5. This configuration
of the diode is forward biasing.

Fig. 10.5 Diode in forward bias

The voltage VF is thus called as the forward voltage. As we increase the VF the width
of the depletion start reducing. Alternately, the potential barrier VO reduces as shown in
Fig. 10.6(b).

Depletion Region

V
n-type

op-type

()a

Depletion Region

V – V n-typeo F p -type

()b

Fig. 10.6 Potential Barrier at PN Junction
(a) at equilibrium (open circuit) (b) At forward bias

If we increase VF further, situation can soon be reached at which depletion region width
is zero. And the moment VF > VO, the charge carriers are swept across the junction under
the influence of electric field. Thus current flows through the device in a direction shown
in Fig. 10.5. The current flowing through the device in this case is called as forward current.

If the batter polarities are reversed i.e., positive terminal is connected to n-type and
negative terminal is connected the p-type, then we get what called reverse biasing. This
is shown in Fig. 10.7. Note that battery is now-labelled VR (reverse voltage), in order to
distinguish it from forward voltage VF.

Fig. 10.7 Diode In Reverse Bias

In this case the electrons of the n-type are attracted towards the positive plate of battery
and holes are attracted towards the negative plate. Consequently the width of depletion

Switching Elements and Implementation of Logic Gates 387

region increases. And increase, in depletion region increases the potential barrier across the
junction as shown in Figure 10.8(b).

Depletion Region

V
n-type

o
p-type

()a

V + V n-typeo R
p -type

()b
Depletion
Region

Fig. 10.8 Potential Barrier at PN Junction
(a) At Equilibrium (open circuit)
(b) At reverse bias

In this situation apparently no current flows through the junction. But in reality due
to the flow of minority carriers there exist a small reverse current called as leakage
current.

10.1.2.1 I–V Characteristics of Diodes

Fig. 10.9 I–V characteristics of a silicon diode with
expanded and compressed scale.

As shown in figure the characteristics is divided in 3 parts.

1. The forward biased region V>0

2. The reverse based region V<0

3. The breakdown region V<–VK

Note that scale for I<0 is expanded and that for V<0 is compressed.

Forward Region
In the forward region i – v relationship is approximated as

I = IS
V/ VT()e η − 1 ...(10.5)

where IS is a constant for a diode at a given temperature.

388 Switching Theory

VT is termal voltage defined by equation 10.4(b).

at t = 27°C or T = 300°K the thermal voltage

VT ≅ 26 mV ...(10.6(a))

η is a parameter and η = 1 for germanium and η = 2 for silicon.

The current IS in eqn 10.5 is called as SCALE CURRENT. The name is given because
IS is directly proportional to the cross-sectional area of junction. This means doubling the
junction area will double the IS which consequently doubles the diode current I as shown by
equation 10.5, for a given forward voltage V.

An inspection of i – v characteristics reveals that almost no current flows (i.e., less than
1% or so) for voltages V < 0.6 V. For voltages varying between 0.6 V to 0.8V there flows an
appreciable amount of current. Thus we say that 0.6 V is a threshold value of voltage that
must be applied for conduction. This is called as cut-in voltage (Vγ). Thus for silicon diode
cut in voltage is

Vγ = 0.6 V ...(10.6(b))

Since for a fully conducting diode voltage drop lies in a narrow range of 0.6 to 0.8V we
can approximate that for silicon diodes

VD = 0.7 V ...(10.6(c)

where VD = Drop across conducting diode.

In forward region we get appreciable amount of current such that I >> IS so we can
approximate equation 10.5 for forward biased region as

I = IS
V/ VTe η ...(10.7(a))

alternately V = ηV I
I

T
S

loge ...(10.7(b))

Example 10.1. Calculate the scale current at room temperature for a 2 mA silicon diode
inforward biased mode.

Solution. By equation 10.6(c) we have drop across conducting diode

VD = 0.7 V

and at room temperature VT = 26 mV by equation 10.6(a)

by equation 10.7(a)

IS = I. V/ VTe− η

for silicon η = 2, given I = 2 mA

so IS = 2 × 10–3 e− −(/ × × ×)07 2 2 26 10 3

or IS ≅ 2.85 × 10–9 A i.e., 1S2.Q5 nA at t = 27°C for this diode.

It is worth noting that since both IS and VT are function of temperature the V–I
characteristics varies with temperature. At a given constant current the drop across diode
decreases approximately by 2.5 mV by every 1°C rise in temperature i.e.,

d
d
V
T

= –2.5 mV/°C

Switching Elements and Implementation of Logic Gates 389

The Reverse Region
When the applied voltage is reversed and diode voltage V is made negative we get the

reverse bias operation of diode. If V is negative and is few times larger than VT in magnitude
we approximate equation 10.5 as

I = –IS ...(10.8)

This means that current in reverse direction is constant in the junction and is equal to
IS, see Fig. 10.7. Since IS is constant it is also called saturation current. Practically diodes
have quite small reverse current but much larger than IS e.g., for IS = 10–15A, reverse
current IR ≅ 10–9 A. The reverse current also increases with increase of reverse voltage.
Major contribution to the reverse current is due to leakage effect. The leakage current is
also proportional to the junction area. In general reverse current doubles for every 10°C rise
in temperature.

Breakdown Region
The breakdown region is reached when reverse voltage exceeds a certain threshold

value for a diode, called breakdown voltage. This is indicated by the knee of V-I characteristics
and thats why it is also called knee voltage and is represented by VK in Fig. 10.9. In the
breakdown region a small increase in reverse voltage results large increase in reverse
current. If the dissipated power is limited, the diode breakdown is non destructive.

Also the fact that V–I characteristics in breakdown region is almost a vertical line,
enables one to use this region for voltage regulation.

10.1.2.2 Diode as a Switch
The P-N junction diode can be operated as a switch in electronics circuits by operating

it into forward biased region and reverse biased region.
When the diode is operated in forward bias at that time the drop across diode is

negligibly small and is almost constant. If the forward current IF is limited by a series O
resistor R, then the forward biased diode can be used as switch in ON condition. This is
shown in Fig. 10.10 (a). If the diode is reversed biased then a small current flows through
the diode, which is almost constant. This can be used to represent a switch in OFF position.

Now let us apply a voltage Vin as shown in Fig. 10.10(b) and see how the diode circuit
shown in Fig. 10.10(a) respond to it.

At t = 0 Vin = V1 and diodes is in forward biased and the drop across conducting diode
is small. This is shown by VD in Fig. 10.11(d). The current IF flowing in the circuit is
approximated as

IF
≅ V

R
1

This is shown in Fig. 10.11(c).

Vin
+

–

ID

+ –
VD

()a

R

V in

V1

V1

()b

Fig. 10.10 Diode circuit with applied voltage in Figure (b).

390 Switching Theory

Vin

t

V 1

O

–V2

t1 t2 t3

()a

t

()b

Excess
Carrie r
Concentra tion

t

IF

D iode
Curren t

()c– IR

– IS

t

D iode
Vo ltage

V D

–V2

ts w itc h

ts tt

()d

Fig. 10.11 Switching waveforms for Fig. 10.10.

Also shown by Fig. 10.11(b) is, when diode is conducting minority charge carriers will
accumulated across the junction. This excess concentration will be quite large if diode stays
ON for long.

at t = t1 Vin switches to –V2 but the diode voltage does not changes immediately as
shown in Fig. 10.11. This is because during t = 0 to t1 minority charge carriers were
accumulated across the junction. This must be removed to change the state of diode. This
takes some time to be done.

“The time required for the removal of excess charge carrier from junction is referred
as storage time (ts)”. In Fig. 10.11 interval t1 to t2 is storage time.

Infact to remove excess charge carriers a large reverse current flows till all the excess
charges are removed. This is shown in Fig. 10.11(c) in interval t1 to t2 where it remains
constant and can be approximated as

IR
≅ −V

R
2

At t = t2 Excess carriers are removed the current IR changes exponentially and goes
towards a steady state value of –IS. As shown in Fig. 10.11(c) and (d) the diode voltage also

Switching Elements and Implementation of Logic Gates 391

changes exponentially to reach to a steady state value –V2. But this takes time and excess
charge carrier start accumulating across the junction. Of course this accumulation is very
small as was in the case of t = 0 to t1.

At t = t3 Both the IR and diode voltage have reached to a steady state value and small
amount of excess charge is accumulated.

“Time taken by the diode to reach to a steady state condition after removal of excess
carrier concentration is referred as transition time (tt)”. Interval t2 to t3 in figure 10.11 is
transition time.

And “the sum of storage time and transition time called as response time or total
time delay of the diode and is oftenty called as switching time (tSWITCH) of the diode i.e.,

tSWITCH = tS + tt ...(10.9)

Since the accumulated excess carrier concentration is large in forward biased it takes
a quite longer time to go to OFF state from ON state. Thats why switching speed is
measured from delay offered by diode to go to OFF state from ON state.

10.1.2.3 Schottky Diode
We have seen in subsection 10.2.2 the switching time is

limited by storage time. The switching, time can be improved
if storage time is reduced. If a junction is formed by using a
SC and a metal then the storage time is reduced dramatically.
Such a junction diode is called as SCHOTTKY DIODE, whose
symbol is shown in Fig. 10.12. An example is a diode formed
using n-type SC and aluminium which has cut-in voltage of
0.35 V.

When the diode is forward biased electrons from n-type enters into aluminium
where they are not minority carriers as aluminium is a conductor. Thus when
junction is reverse biased problem of removing excess minority carriers does not
exist. So the SCHOTTKY diodes have negligible storage time and have very high
switching speed.

10.1.3 Bipolar Junction Transistor (BJTs)
Yet another non linear semiconductor device is a 3-terminal Bipolar junction transistor.

The basic principal is to apply a voltage between two terminals to control the current flowing
into the third terminal.

A transistor is formed by sandwitching a p-type semiconductor between two n-type
semiconductors or by sandwitching an n-type semiconductor between two p-type
semiconductors. The former is called npn transistor and later is called a pnp transistor. A
simplified structure with their symbols along with conventional current direction is shown
in Fig. 10.13.

An observation of above figure reveals that a transistor is nothing but two PN
junction diodes connected back to back. The three regions are named emitter, base and
collector which forms two junction the emitter to base junction (EBJ) and collector to
base junction (CBJ). To be useful practically emitter is heavily doped, base is lightly
doped and width of base is made small i.e., thin base, and collector is made thick offering
high resistance.

Fig. 10.12 Symbol of a
schottky diode

392 Switching Theory

n p n

Em itte r Base Co llecto r

CE

EBJ CBJ

B

E
IE

IC

C

IB

B

p n

Em itte r Base Co llecto r

C

E

EBJ CBJ

B

E
IE

IC

C

IB

B

p

() npn transis to ra () pnp transis to rb

Fig. 10.13 The bipolar junction transistor

10.1.3.1 Configuration and Operation of BJTs
Depending upon the biasing of emitter to base junction (EBJ) and collector to base junction

(CBJ) the transistor can be operated in different modes. This is sumarised in Table 10.1.

Table 10.1 Modes of operation of BJT

EBJ Biasing CBJ Biasing Mode

REVERSE REVERSE CUTOFF

FORWARD REVERSE ACTIVE

FORWARD FORWARD SATURATION

REVERSE FORWARD INVERSE ACTIVE

The Active mode is used for amplification whereas CUTOFF and SATURATION is used
for switching application.

In order to configure the device as two port network one of the three terminals of the
device is made common to both the input acid output. Thus three different configuration are
possibles as shown in Fig. 10.13(a). Out of these three configurations the common emitter
(CE) configuration is the most used configuration. Note that all the transition in Fig. 10.13
are n-p-n transistor.

E

C

B

() Comm on Base (CB)a

Inpu t O utpu t

C
B

() Comm on Em itte r (C E)b

Inpu t

O utpu t

E

E
B

() Com mon Em itter (CC)c

Inpu t

O utpu t

C

Fig. 10.13(a) Different configuration of transistors

OPERATION
To understand the operation consider the biasing of npn transistor, shown in Fig. 10.14.

The diagram shows simplified carrier movement due to diffusion only. The EBJ is forward
biased by dc supply VBE and CBJ is reverse biased by supply VCB.

Switching Elements and Implementation of Logic Gates 393

Fig. 10.14 Biased npn transistor.

The forward biasing of EBJ causes a current to flow across the junction due to electrons
injected to base from emitter and due to holes injected from base to emitter. Flow of both
the carriers constitute the current in same direction. Moreover since emitter is much
heavily doped and base is lightly doped the emitter current is entirely due to the electrons.
Upon entering into the base the electrons injected becomes minority carrier. Some of these
electrons will recombine with holes in base and rest can reach to CBJ. The positive collector
voltage VCB causes these electrons to be swept across the CBJ depletion region in to the
collector. Thus they get collected to constitute collector current IC. Since width of the base
region is very thin, recombination in base region is very small. Thus almost all the injected
electrons can be collected into collector region. The collector current IC is given as

IC = IS
V VBE Te / ...(10.09)

where IS = saturation current or current scale factor

and IS ∝ junction area EBJ (or device size)

VBE = VB – VE = Base to emitter voltage

VT =
K TB.

q = Thermal voltage = 26 mV at room temperature.

Note that IC is independent of base to collector voltage VCB. This means as long as
collector is positive with respect to base (i.e., VCB = VC – VB > 0) electrons injected from
emitter will be swept into collector to make collector current. This is a very important
observation because it also implies that if, “VCB < 0 i.e., CBJ is forward biased then injected
electrons may not be swept across the junction and collector current remains unaffected”.
This fact can be utilized for switching. As evident from the figure the base current is made
up of two components. One is due to the injected holes into emitter and other is due to holes
that must supplied by the battery for every hole disappeared due to the recombination in
base region. Both the current adds together to give base current IB.

Analysis shows that infact the base current is a fraction of collector current and is
represented as

IB =
IC

β ...(10.10)

where β is a constant for particular transistor and is called common emitter current gain.
The β depends upon width of base and relative dopings of base and emitter region. To achieve
high β (which is usually the case) base should be very thin and emitter must be heavily doped
with lightly doped base.

394 Switching Theory

The emitter current is sum of base current and collector current as shown in Fig. 10.14.
Thus

IE = IB + IC ...(10.11(a))

by equation (10.10) we get

IE = I IC
C

p
+

or IE =
β

β
+ 1 IC ...(10.11(b))

if we define α =
β

β + 1 ...(10.11(c))

then we get IC = αIE ...(10.11(d))

where α = common base current gain alternatively for β

β =
α

α1 − ...(10.11(e))

Since α is constant and is less than but closer to unity it is a consequence of equation
10.11(e) that a small change in α will result in large change in β.

Although we have presented the working with a n-p-n transistor, the same is applicable
for p-n-p transistor but with all current directions and voltage polarities reversed as in p-n-
p transistors majority carriers are holes.

Example 10.2. Design the circuit given in 10.15 to have a collector current of 1 mA
with collector voltage of 5V. Given that transistor has β = 50 and base to emitter drop
VBE = 0.7 V.

Solution. Given β = 50, IC = 1 mA, VC = 5V and VBE = 0.7 V

The current IC is flowing through the resistor RC and is given as

IC =
15 5−

RC

or RC =
10
IC

at IC = 1 WA

we get RC = 10 KΩ

we have IB =
IC

β

so at ImA = IC IB =
1 10

50

3× −

or IB = 20 µA

again we have VBE = VB – VE

so VE = VB – VBE = 0.7 V

i.e., VE = –0.7 V

Fig. 10.15 Circuit for
Example 10.2.

Switching Elements and Implementation of Logic Gates 395

we have α =
β

β + 1

so at 1β = 50, α ≅ 0 98.

we have IC = αIE

or IE = 1 10
0 98

3×
.

−

i.e., IE ≅ 1 02. mA

The same value can also be calculated by

IE = IC + IB

= 1 mA + 20 µA = 1.02 mA

emitter current IE can be given as

IE =
V

R
E

E

− −()15

or RE =
V

I
E

E

+ 15
 =

− +
−

0 7 15
1 02 10 3

.
. ×

finally RE ≅ 14 KΩ

10.1.3.2 BJT Characteristic
The first characteristic we consider is the plot of collector current with respect to base

to emitter drop across the junction. In CE configuration the base is used to supply the input
and the collector is used to take the output. Thus the plot shown in Fig. 10.16 for a silicon
npn transistor displays the transfer characteristics. As shown in figure when the base to
emitter drop is below 0.5 V then there flow a small amount of current in the collector
junction. The moment drop across base to emitter
junction increases 0.5 V the current increases appreciably
and at about 0.7 V drop, large collector current flows in
the collector circuit. Thus we can regard VBE = 0.5 V
as cut-in voltage and VBE = 0.7 V as active voltage
for a npn transistors madeup of silicon.

A plot of collector current with respect to collector
to emitter voltage drop for a given value of base current
is called as the output characteristic of transistor, as
shown in Fig. 10.17

The output characteristics can be devided into
three regions. The active region, cut off region, and
saturation region. The active region operation is what
we discussed earlier to describe the operation. This
region is used for amplification in which small change
in base current results in larger current.

Fig. 10.16 Transfer characteristics
of CE configuration.

396 Switching Theory

Fig. 10.17 Output Characteristics of CE Configuraiton

In the saturation region both CBJ and EBJ are forward baised. Since the voltage across
EBJ and CBJ are very small under forward biased, the collector to emitter voltage also is
very small as

VCE = VBE – VBC ...(10.12)

In the saturation region the collector current does not change appreciably and can be
considered that collector current is approximately independent of base current. In saturation
region the collector current may be given as

ICsat =
V V

R
V
R

CC CEsat

C

CC

C

− ≅ ...(10.13(a))

because VCsat is very small and is approximately 0.2 V for silicon npn transistor operating
well into saturation. a good check of saturation operation is

βmin IB > ICsat

alternately hFEmin IB > ICsat ...(10.13(b))

where hFE is just an alternate representation for current gain β.

The cut off region approached when both the CBJ and EBJ are reverse biased and no
emitter current flows. Even though both the junctions are reverse biased there flows a small
amount of current at CBJ called reverse saturation current ICO. Thus to make IE = 0, IB =
–ICO as IC = ICO at this time. Thus we can say that cutoff is reached when IC = ICO, IB =
–ICO, thus making IE = 0 and VBE = OV for Si and V VBE ≅ − 0 1. for Ge.

Table 10.2 may serve as reference to choose typical values for different mode of operation.

Table 10.2 Typical npn transistor junction voltages at 25°C

Semiconductor VBEcut in
 (Vγ) VBE ACTIVE VCESAT VBESAT VBECUTOFF

Si .5V 0.7 0.2 0.8 0.0

Ge 0.1 0.2 0.1 0.3 –0.1

Switching Elements and Implementation of Logic Gates 397

Example 10.3. For the circuit shown in figure 10.18
determine weather the silicon npn transistor with hFE =
100 is in saturation or not. Use table 10.2 for typical values.

Given hFE = 100

RC = 5K

RB = 20K

Solution. Let us first assume that transistor is in
saturation and calculate the currents. If calculated values
confirm saturation then we say it is in saturation otherwise
not. Apply KVL in base circuitry we get.

5 – IB 20 × 103 – VBEsat = 0

so IB =
5 VBESAT− = −
20 10

5 0 8
20 103 3×

.
×

or IBsat = 0.21 mA ...(1)

Applying KVL to output side we get

VCC – I R VC C CEsat sat− = 0

or ICsat =
V V

R
CC CE

C

sat− = −10 0 2
5 103

.
×

or ICsat = 1.96 mA ...(2)

by equation 10.13(b) hFEIB > IC in saturation.

hFEIB = 100 × 0.21 × 10–31 = 21 × 10–3

Since hFEIB (21 × 10–3) is greater than ICsat, the transistor is in saturation region.

10.1.3.3 Transistor as a Switch
To understand the switching characteristics let us consider the transistor as inverter as

shown in Fig. 10.19, along with input voltage.

Consider the input for time t < t1. Waveform shows that both EBJ and CBJ are reverse
biased as Vin = –V2.

Vin

R C

+V C C

R S

VB E
C B E

Vo

V in V1

–V2

tt1

t2

() Inverte r C ircuita () Inpu t to Inverterb

Fig. 10.19 npn transistor as inverter

Fig. 10.18 Circuit of
Example 10.3.

398 Switching Theory

At this moment almost all the supply voltage +VCC appear at output and no collector
current flows in circuit. This is shown in Fig. 10.20 for t < t1. This represents the transistor
in OFF state. Note that at this moment transition capacitance CBE is charged to –V2. The
moment input changes instantaneously to V1 the transistor can not change its state
instantaneously. The capacitance CBE starts charging towards V1 (from –V2). The moment
VBE > Vγ transistor starts conducting after some times it enters into saturation. This is
shown in Fig. 10.20 for t > t1. Here the delay time (td) is the time taken by collector
current to rise to 10% of ICsat from O. Also shown is rise time (tr) is time taken by collector
current to reach to 90% ICsat from 10% of ICsat . Sum of delay time and rise time is referred
as ON time (tON) of the transistor. i.e.,

tON = td + tr

Note that during this time the collector voltage will be reduced to VCESAT from VCC, as
shown in figure.

V1

V in

T1

T2

–V2

IC S AT
0 .9 IC S AT

0 .1 IC S AT

td tr

tO N
ts

tO F F

VC
+V C C

tf

t

IC

VC E S AT

t

t

Fig. 10.20 Switching Characteristics of Tansistor.

At time t = t2 the input changes abruptly to –V2 from V1. Again the transistor takes
some time to change its state. This is mainly due to two facts. First enough charges are
accumulated in base due to saturation. Recall that in saturation injected carriers may not
all be swept across CBJ. It takes some time to remove these carriers. Second, even before
the input goes below cut off many charge carreirs are already injected. These two facts gives
rise to delay to switching effect. Thus after certain time transistor becomes OFF and collector

Switching Elements and Implementation of Logic Gates 399

voltage rises to +VCC. As shown in Fig. 10.20 storage time (ts) is the time taken by collector
current to reduce to 90% of ICsat

 after the input has change its state from positive to
negative value. Fall time (tf) is the time taken by collector to reduce to 10% of ICsat

 from
90% of ICsat

. Sum of storage time and fall time is defined as OFF time (tOFF) of the
transistor i.e.,

tOFF = tS + tf

From the figure it is clear that OFF time is larger than the ON time. This is mainly
due to the storage time, which is significant due to the saturation region, operation.

10.1.3.4 Schottky Transistor
In previous subsection we pointed out that main victim of switching delay of a transistor.

If we connect a schottky diode between base and collector as shown in Fig. 10.21(a), then
transistor can be prevented to enter into saturation region. When the transistor is in active
region the diode is in reverse bias. When the transistor goes to saturation, the diode
conducts. The diode drop (typically 0.4 V) is applied to CBJ and it does not allow the
transistor to enter into saturation as VBC = VB – VC = VD. Very fast switching speed can be
obtained when using schottky transistors in diode circuit.

() Configura tiona () Sym bo lb

Fig. 10.21 Schottky Transistor

10.1.4 Metal Oxide Semiconductor Field Effect Transistors (MOSFET)
These devices have current control mechanism based on an electric field established by

voltage applied to the control terminal. In these devices the current is conducted by only one
type of charge carriers, either electrons or holes, and thus called unipolar transistors.
Important characteristics of this device is that it can be fabricated is very small area as
compared to BJTs and for this reason they are most widely used in very large scale integrated
(VLSI) circuits. Circuits implemented using MOS devices do not need resistors, diodes, etc.
rather they can be implemented using MOS devices only. Generally there are two types of
MOS devices called ENHANCEMENT type and depletion type. The enhancement type are
widely used.

Enhancement Type MOSFET
The basic structure and circuit symbol of enhancement type n-channel MOS (or NMOS)

transistor is shown in Fig. 10.22. The device is grown on a p-type substrate called body. It
contains two heavily doped n-type regions called source and drain. On the top of device a thin
layer of SiO2 is deposited between sources and drain. A metal is deposited on the top of this
layer and the terminal taken from it is called gate. Due to the thin layer of SiO2 there exist
a small current in gate terminal. It is evident from figure substrate forms two PN junctions
with source and drain. In normal operation they are kept reverse biased by connecting the

400 Switching Theory

body and source terminal to the ground. Thus the substrate have no effect on operation as it
is always shorted with source and device becomes three terminal device. When proper voltages
are applied the current flows between source and drain through the region labelled channel
which is of length L. When no voltage applied no current flow through channel.

n + n +Channe l R eg ion

L

p-type Substra te
(BO DY)

M etal

Body (B)

Source (S)
G ate (G)

Dra in (D)

N+–Heavily Doped n -reg ion
SiO –Silicon D i O xide insu la tion2

M etal

() S tructu re of Enhancem ent type n-chanel M O S (o r NM OS) transis to ra

B

D

S

G

D

S

G

D

S

G

() C ircu it Symbo lb () Sym bo l when
B and S shorted
c () Equiva lent Sym bo l

o f Fig. c
d

SiO 2

Fig. 10.22 Enhancement Type NMOS.

Let the gate is connected to positive voltage as shown in Fig. 10.23, with source and
drain grounded. The positive voltage at gate causes the free holes to be repelled from the

Fig. 10.23 Enhancement type NMOS with Positive Voltage at Gate.

channel region and thus leaving behind a carrier depletion region, as shown in Fig. 10.23.
At the same time positive gate voltage attracts electrons from n+ regions into channel

Switching Elements and Implementation of Logic Gates 401

region. When sufficient number of electrons are accumulated in the channel region, it
creates an n-region connecting drain and source. This is called induced n-type channel. When
a voltage is applied at drain the current can flow through this region. The value of VGS at
which the n-channel is induced is called as threshold voltage (Vt). The gate and body of
MOSFET form a parallel plate capacitor with SiO2 layer acting as dielectric. The electric field
developed between the plates of capacitor controls the amount of charge in the channel and
thus determines the channel conductivity.

If we apply a small positive voltage
VDS shown in Fig. 10.24 then a current
ID flows in induced n-channel from drain
to source. Magnitude of ID depends upon
the density of electrons in induced
channel which in turns depends upon the
magnitude of VGS. If VGS exceeds Vt
density of free electrons increases in
induced channel. This means VGS > Vt
enhances the channel and hence the
name enhancement type MOS. At VGS
= Vt channel is just formed and above Vt
its conductivity is increased. Thus the
conductivity of induced channel is
proportional to excess voltage VGS – Vt
which is also called as effective voltage.
It is also evident from the Fig. 10.24
that the current (IS) leaving source
terminal is same as the current (ID)
entering into drain terminal. Thus only
electrons contribute the current in the
channel and the device is called
unipolar. In essence, the voltage VDS
appears as drop across the length of
channel. When VDS is small, say 0.1 V
or 0.2V then shape of channel is almost
uniform as shown in Fig. 10.25. In this
case ID Vs VDS is almost linear and this is
shown in Fig. 10.26. If we increase the VDS then we find that width of induced channel on
the drain side reduces where as it remains as it is on source side. Thus the voltage at drain
end also reduces by VGS – VDS, as shown in Fig. 10.25. At this time less room is available
for conduction and hence channel resistance increases. This causes a bend in ID Vs VDS
curve, shown in figure 10.26. When we make VDS = VGS – Vt or VDS – VGS = Vt the width
of channel on the drain side is almost zero, and the channel is said to be pinched OFF. At
this time maximum possible resistance is affered by induced channel. Because the channel
width can not be reduced further, see Fig. 10.25. Since beyond this value VDS resistance is
constant the current flowing in the channel is also constant, as shown in Fig. 10.26. The
value of VDS beyond which constant current flows into the channel is referred VDSSAT. The
drain to source voltage at which the pinch off occurs when VGS = 0, is called as pinch off
voltage (VPO).

Fig. 10.24 Enhancement type NMOS with
VDS and VGS.

Fig. 10.25 Change in shape of channel with
increase in VDS.

402 Switching Theory

Fig. 10.26 IP VS VDS.

The P-channel enhancement type MOSFET is formed by using n-type substrate and
p+ type source and drain. In case of PMOS the induced channel is p-type region. The circuit
symbols of PMOS are shown below.

S

D

S

G

D

S

G

D

S

G

() Sym bo l o f
Enhancement PM O S

a () Sym bo l w hen source
and substrate

shorted

b () A lte rna te sym bo l
o f Figure ()

c
b

Fig. 10.27 Circuit symbols of enhancement PMOS.

Note that in NMOS current flows due to electrons and in PMOS due to holes. Since
mobility of electrons is higher than holes, thus NMOS is faster than PMOS. Since mobility
of electrons is 3 time greater than holes PMOS devices needs 3 times large area to generate
the same amount of current that of NMOS. Thus packing density of NMOS is greater than
that of PMOS.

10.1.5 The Complementry MOS (CMOS)
The most widely appreciated MOS technology is COMPLEMENTARY MOS or CMOS

technology. As the name implies the CMOS technology uses both PMOS and NMOS transistors.
At present time the CMOS has replaced almost all the NMOs circuit designs. For the
fabrication the two transistors are grown on same p-type substate and their drain are
separated by deposition SiO2. An n-type well is created in the p-type substate to facilitate
PMOS its packing density is bit lower than NMOS. But in terms of power dissipation the
CMOS performance is dramatically improved. This gives enough motivation for CMOS to be
used as powerfull circuit designing tool.

Before we end the discussions an MOS devices we state few more properties for which
they superceeds the BJT. For the fabrication point of view, the chip area required by a MOS
transistor is just about 5% of that required by BJTs, making high packing density of MOS.

Switching Elements and Implementation of Logic Gates 403

The input capacitance and resistance of MOS devices are very high, thus they can be easily
driven by a source as compared to the BJTs. An even attractive feature is that CMOS devices
can operate on a wide range of supply voltages, in particular from 3V to 15V. This makes
interfacing, a problem discussed later, of CMOS easier with other logics. An as earlier
mentioned the power dissipation is minimum with CMOS as compared to any other technology.

10.2 CHARACTERISTICS OF LOGIC FAMILIES
The different types of logic functions can be realized by a variety of digital circuits. Each

of these circuits have different form of interconnection between semiconductor devices and
the circuit elements. Each form of such circuits can be used to realise a different logic
function, such that all the circuitries of this form posses similar characteristics. Thus they
can be brought to a single group called a Digital Logic Family.

In short a digital logic family is a group of compatible logic devices. Compatibility
means input and output characteristics of the devices match with each other.

10.2.1 Classification of Logic Families
In the Section 10.1 we studied different semiconductor devices. Based upon the devices

and their mode of operation used to realize the logic function provides the basis for
classification. Mainly the classification is made on the basis of types of charge carriers
contributing for current conduction. They are classified as Bipolar logic families and
Unipolar logic families. Diagram shown in Fig. 10.28 summarizes this classification.

The main elements of Bipolar logic families are resistors, diodes (which are also capacitors)
and transistors. Where as in Unipolar logic families the only element is the particular type
of MOS transistor. In bipolar families the RTL and DTL are obselete now and in present time
TTL and ECL are mostly used. The TTL is further classified as schottky TTL giving attractive
range of families suitable for various applications. In unipolar families PMOS is totally
obselete due to their low speed. NMOS is widely used for high packing density and complicated
logic devices, like memories and microprocessors. CMOS is an attractive choice for the
fabrication of low power consumption devices like calculators but they have a bit slower
speed.

Fig. 10.28 Clasification of Locig Families.

404 Switching Theory

Yet another classification of digital ICs can be made on the basis of level of integration
of logic gates in a single IC. This is shown by table 10.3.

Table 10.3 Classification of Digital ICs based on Level of Integration

Integration Scale Number of Gates Fabricated

SSI – Small Scale Integration Less than 12 gates

MSI – Medium Scale Integration 12 < Gates < 100

LSI – Large Scale Integration 100 < Gates < 1000

VLSI – Very Large Scale Integration 1000 < Gates < 10,000

ULSI – Ultra Large Scale Integration Gates > 10,000

10.2.2 Characteristics of Digital ICs and families
Emergence of various logic families and integration techniques have resulted in

widespread use of digital ICs. It is thus necessary to study different performance
parameters and characteristics of logic families. They adequately reflects their relative
advantages and disadvantages and may serve as a basis to choose a particular family
for the application. Infact our study and analysis of different families will be around
these parameters only.

• Propagation Delay is the maximum time taken by output to change its state in
response to input. The propagation delay determines the speed of operation of a
gate. In general switching speed is measured when 50% duty cycle time square
wave is applied at a input and a square wave is generated at output, as shown in
Figure 10.28(a). The times are measured from 50% of voltage levels. The time tPHL
is delay when output goes LOW from HIGH and tPLH is the time delay taken by
output to go HIGH from LOW state. The propagation delay tp is average of the
two times and measured in n sec.

tp =
t t nPHL PLH Propagation Delay (sec)+ =

2

Fig. 10.28(a) Input-output waveforms for propagation delay

• Power Dissipation (PD) is defined as the power dissipated in an IC and measured
in mW. It is desired to have low power dissipation to reduce cooling, but it may
increase the propagation delays.

• Speed power product is defined as the product of propagation delay (in nano
seconds) and power dissipation (in mW) and is measured in pico joules. It is also
referred as the figure of merit of a digital IC.

Switching Elements and Implementation of Logic Gates 405

figure of merit = Propagation delay × Power Dissipation

= tp × PD = n sec × mW

= pJ

• Fan In is defined as the number inputs that a logic gate can have

• Fan Out is defined as number of similar gates that a logic gate can drive. High
fan out is desirable.

• Input and Output Voltages various input and output voltage levels are shown
in Fig. 10.29.

High Level Input Voltage (VIH) is defined as the minimum input voltage
recognized as logic 1.

Fig. 10.29 Illustration of Voltage Profiles

Low Level Input Voltage (VIL) is defined as maximum value of input voltage
recognized as logic 0.

High Level Output Voltage (VOH) is defined as the minimum value of output
voltage when output is logic 1.

Low Level Output Voltage (VOL) is defined as the maximum voltage that appears
at output when output is logic 0.

The voltage separation between the two logic states is defined as the logic swing.

Input logic swing = VIH – VIL

Output Logic swing = VOH – VOL

• Input and Output Currents The important input and output currents are shown
in Fig. 10.30.

HIGH LEVEL INPUT CURRENT (IIH) is defined as the minimum current that
must be supplied to a gate corresponding to logic 1 input.

Fig. 10.30 Illustration of currents in a gate

Low Level Input Current (IIL) is defined as the minimum current that must be
supplied to the gate corresponding to logic 0 input.

406 Switching Theory

High Level Output Current (IOH) is defined as the maximum amount of current
that a gate can sink when output is logic 1.

Low Level Output Current (IOL) is defined as the maximum amount of current
that a gate can sink when output is logic 0.

Why we have shown the output currents as sink current will be clear when
discussing the circuits of various families.

• Supply Currents it is important to consider the current drawn in low and high
state.

High State Supply Current (ICC(1)) is the current drawn from supply when
output of gate is logic 1.

Low State Supply Current (ICC(O)) is the current drawn from supply when
output of gate is logic O.

We can calculate average power dissipation by calculating the dissipation in two
states.

The Low state power dissipation P(O) = VCC.ICC(0)

The High state power dissipation P(1) = VCC. ICC(1)

The average power dissipation Pavg =
P(1) + P(0)

2
This is how we will calculate the power dissipation of various families in next
sections.

• Noise Margin Unwanted electric signals, called noise, can appear when connecting
the logic devices. These noise signals can cause the voltage levels to rise or reduce
from intended value. This may cause circuit malfunction. For example if noise
causes an input voltage to reduce below the V1H, then input is not recognized as
logic 1 and thus the circuit malfunctions. The ability of a circuit to tolerate the
effect of noise is called as noise immunity. The amount by which a circuit can
tolerate the effect of noise is called noise margin. The noise margins are illustrated
in Fig. 10.31. Margins shown in the figure are called dc noise margin, they are

∆1 = VOH – V1H = High state noise margin

∆O = VIL – VOL = Low state noise margin

Fig. 10.31 Illustration of Noise Margins.

Switching Elements and Implementation of Logic Gates 407

Infact noise is a random signal, considered as ac signal with some amplitude and
pulse width. If the pulse width is large compared to propagation delay they can be
treated as dc. If the pulse width is less than propagation delay, then pulse width
is not enough to change the state of circuit. In this situation the noise pulse
amplitude must be large enough to change the state of circuit. Thus the logic
circuits have high ac noise margins. It is specified in data sheet in form of a
curve of noise margin Vs noise pulse width.

• Operating Temperature is the range of temperature in which the digital IC can
function properly. In general 0 to +70°C is the range for consumers and industrial
applications. A range of –55°C to 125°C is accepted for military applications.

10.3 IMPLEMENTATION OF LOGIC FAMILIES
So far we have studied the switching characteristics of semiconductor switching devices

and logic families. We now turn our attention to the implementation of gates of different
families. Here we start with the basic diode logic then move to various families of BJTs and
then to MOS family which are most important for fabrication of ICs.

10.3.1 Basic Diode Logic
To start with Diode logic let us first define the two voltage levels corresponding to two

logic levels.
Let V(1) = Voltage corresponding to logic 1 = +VCC

V(0) = Voltage corresponding to logic 0 = Gnd or OV
Let all the diodes are silicon diode and have the drop of 0.7 V when in conduction. In

all the cases we measure the output voltage with respect to ground, assuming that forward
resistance of diode (Rf) is very small.

DIODE AND GATE
A two terminal diode AND gate is shown in Fig. 10.32 and we assume that the resistance

R >> RS so that drop across RS can be neglected in calculation.
VR = Reference Voltage
RS = Source Resistance
Y = Output of Gate

D1, D2 = Identical Diodes
A1B = Logic inputs

R = Pullup Resistor

Fig. 10.32 Diode and Gate

408 Switching Theory

Resistor R is called pullup resistor because in some sense it pulls the output from logic
low to logic high.

As evident from the circuit, status of inputs A and B will make the diode conducting
(ON) or non conducting (OFF). For simplicity let us first consider that–both the inputs are
at logic 1 i.e., A = B = V(1). We get Figure 10.32 reduced as in Figure 10.33(a).

Fig. 10.33 (a) And Gate of Fig. 10.32 at A = B = V(1)

Both the diodes are reverse biased and represents open circuit as shown. Since there
is no path for current flow through resistor it will not have any drop across it and VR = V(1)
appears at output. This is obvious because when all inputs to the AND gate are high then
output is high. Thus

when A = B = V(1) Y = V(1)

when A = V(1) and B = V(0), the diode D2 conducts and D1 remains in OFF condition. The
equivalent circuit in this case is shown below in Figure 10.33(b).

Fig. 10.33 (b) And Gate of Fig. 10.32 at A = V(1) and B = V(0)

Since a current flows through R, through Diode D2 towards ground (V(0)) we get drop
across diode D2 at output so when A = V(1) and B = V(0) Y = V0 = 0.7 V = LOW which
confirms that if any of the input of AND gate goes low output goes low.

When A = V(0) and B = V(1) In this case D1 conducts and D2 goes OFF and output
again becomes the drop across diode i.e., Y = 0.7 V.

When A = V(0) and B = V(0) In this case both D1 and D2 conducts having a drop of
0.7 V. Again this drop appears at output. So the output Y = 0.7 V. All these value of outputs
along with logic state is summarized in table 10.4 which confirms AND gate. Note that we
define 0.7 V as logic low at the output where as 0 V as logic low at the input. For logic 1
voltages at input output are same.

Switching Elements and Implementation of Logic Gates 409

Table 10.4 : Input/output table of AND GATE of figure 10.32

Inputs Output

A B Y Logic State

V(0) V(0) 0.7 V LOW

V(0) V(1) 0.7 V LOW

V(1) V(0) 0.7 V LOW

V(1) V(1) V(1) HIGH

Diode OR Gate
A two terminal OR Gate is shown in Fig. 10.34. All the conventions and assumptions

are same as Diode and gate discussed previously. Here the position of VR is shown below the
output Y, just for convenience. It is equally well if you show it above Y with same connections.

Fig. 10.34 Two terminal diode or gate.

As evident from figure the drop across resistor R will be the output voltage.

When both inputs are low i.e., when A = B = V(0) both the diodes are OFF and
represents switch in open condition as shown in Fig. 10.35 (a). So no current flows through
R and the output Y = VR = V(0) = LOW. This is consistent with the definition of OR gate.

When A = V(1) and B = V(0), D1 conducts and D2 remains OFF as shown in Fig.
10.35(b). Thus a current flows through resistor R starting from input A through D1 through
R to ground. Now applying KVL to conducting path we get

V(1) – VD – Y = Y neglecting RS

So Y = V(1) – VD

or Y = V(1) – 0.7V = HIGH

Fig. 10.35 (a) Diode or Gate Fig. 10.35 (b) Diode or Gate with
with A = B = V(0) A = V(1) and B = V(0)

In digital circuits we take V(1) = 5 V generally, so saying Y = V(1) – 0.7 V means y = 4.3 V
which is good enough to regard as HIGH output.

Similar situation occurs when A = V(0) and B = V(1) and when A = V(1) and B = V(1).

410 Switching Theory

Thus the gate shown in Fig. 10.34 behaves as OR gate. Readers are advised to find out the
input/output table for this gate by taking V(1) = 5V.

10.3.2 Resistor Transistor Logic (RTL)
The RTL family is now a days historical but its study and analysis can give good

understanding and enough motivation for the other logic families. The Basic RTL gate is
a NOR gate as shown in Fig. 10.36. For the logic operation we first assume that logic
low input is sufficient to switch off the transistor and logic high is sufficient to switch ON
the transistor.

When both the inputs are high i.e., A = B = V(1), both Q1 and Q2 goes to ON state
i.e., both enters into saturation. Thus the voltage at collectors is nothing but VCEsat . So
output Y = VCEsat . Hence, when

A = B = V(1) Y = VCEsat = 0.2 V

≅ V(0) = LOW

When both the inputs are low i.e., A = B = V(0), both Q1 and Q2 goes to OFF state.
Thus no current flow through RC and drop across RC is zero. So whole +VCC will appear at
output i.e., Y = +VCC = 3.6 V = HIGH.

Thus when A = B = V(0) Y = +VCC = HIGH

When only one input goes high i.e., A = V (1) and B = V(0) or when A = V(0) and
B = V(1), the transistor feeded with high input conducts causing a current to flow through
ON transistor. Consequently the transistor enters into saturation. Thus the output voltage
becomes VCEsat . So,

when A = V(1) B = V(0) Y = VCEsat = LOW

A = V(0) B = V(1) Y = VCEsat = LOW

From the above discussion it is clear that output of circuit shown in Fig. 10.36 represents
a NOR gate. It is because when all the inputs are low, only then output is high otherwise
the output is low.

Fig. 10.36 The RTL NOR Gate.

Switching Elements and Implementation of Logic Gates 411

To find out the FAN OUT, NOISE
MARGINs etc. let us consider the loading of
RTL gate as shown in Fig. 10.37. For the ease
of analysis we connect the input B of all the
load gates are connected to logic LOW and
all the A inputs connected to the output of
Driver gate.

Note that all the load gates and the driver
gate are identical with all the parameter
assumed same.

Since all the B inputs are low, transistor
Q2 (of Fig. 10.36) represents switch in open
condition. So transistor Q2 may not be drawn in
this condition as shown in Figure 10.38(a). To
understand the idea let us consider an example.

Example 10.4. Find out the Noise margin and Fan out of the RTL NOR gate shown
in Fig. 10.38(a). Given the transistors have hFE = 7.

Solution. To begin with we take the assumptions and connection explained for Figure
10.37.

To find out FAN OUT let both the inputs of Driver gate are low i.e., A = B = V(0). Then
both the Q1 and Q2 goes to cut off and output of driver goes HIGH. Thus all the load gates
are driven by this HIGH output and consequently all the load transistors are driven into
saturation. In this situation a current IBT will be drawn from the +VCC of driver side, as
shown in Fig. 10.38(a). Since all load transistors are identical, they will draw equal amount
of base current. Thus,

Fig. 10.38 (a) RTL under loading.

Fig. 10.37. An RTL Gate Driving
N-Load Gates.

412 Switching Theory

IBT = I I IB B B1 2 N+ + +.......
and since IB1 = I IB B2 N....... =
we get IBT = N.IB1

or IB1 =
I
N
BT ...(10.14)

When a load transistor is driven into saturation it can be represented as shown in
Fig. 10.38(b).

Fig. 10.38 (b) Equivalent representation of transistor in saturation

Similarly if all the load transistors are in saturation we get equivalent figure as shown
in Fig. 10.38(c).

Fig. 10.38 (c) Equivalent circuit for N-load gates in saturation.

Thus we can redraw the Fig. 10.38(a) when both A and B inputs of driver gates are low,
as shown in Fig. 10.38(d).

Fig. 10.38 (d) Equivalent circuit

Switching Elements and Implementation of Logic Gates 413

Thus the current IBT can be calculated as

IBT = V V

N

CC BEsat−
+640 450

Now by using equation (10.14) base current to individual transistor can be given as

IB1 =
I
N
BT

So IB1 = 1
N

V V

N

V
640 N + 450

CC BEsat. . .−
+

= −

640 450
3 6 0 8

or IB1 =
2 8

640
.

N + 450 ...(10.15)

For each of the load transistor in saturation, the current ICSAT can be calculated as

ICSAT =
V V

R
CC CE

C

SAT− = −3 6 0 2
640

. .
(see Fig. 10.38(b))

or ICSAT = 5.31 mA

Now the current IB1 of load gate G1 as calculated in equation 10.15 must be sufficient
to drive the transistor in saturation. In saturation the I and IB C1 SAT must follow the relation.

IB.hfe > ICSAT

i.e.,
2.8 × 7

640 N + 450 > 5.31 × 10–3 (given hfe = 7)

for worst case

19.6
640 N + 450 = 5.31 × 10–3

or 19.6 = 3.3984 N + 2.3895

or N = 5.064

thus taking N = 5 will always drive transistors into saturation. So FAN OUT = 5.

With N = 5 we get I mAB1 = 0 767.

and IBT = 3.835 mA

To calculated noise margin let us first find out the output voltages at two states.

When output is in low state Vo = VCEsat = 0.2 V. When this output is applied to load
transistor, it will go into cut off. If noise causes it to become 0.5V (Vv of transistor) then load
transistors will conduct and circuit malfunctions. Thus low state noise margin.

∆0 = Vv – VCEsat = 0.5 – 0.2 = 0.3 V

i.e., ∆0 = 0.3V

414 Switching Theory

when the output of driver goes high all the load transistors goes to saturation and a current
IBT flows. Thus the output voltage will be

Vo = VRBT + VBEsat (see Fig. 10.38(d))

VRBT = IBT.RBT = 3.835 × 10–3 × 90 for N = 5

so VRBT = 0.345 V when N = 5

thus Vo = V VR BEBT sat+ = +0 345 0 8. .

Vo = 1.145 V when N = 5

So if this voltage is applied from driver to load, all the load transistors will enter into
saturation. Since N = 5 was calculated for hfeI IB Csat= , that means any voltage less than 1.145
V may not be able to drive the load transistors into saturation. So we may say that if it is
reduced to 1.045 V load transistor may not be in saturation. So high state noise margin
∆ 1 0 1≅ . V. Infact the high state noise margin depends upon the number of gates being
driven. If lesser number of load gates are connected the noise margin would be improved.

The Propagation Delay is also affected by number of load gates. When output of driver
is LOW all the load transistors are in cutoff and their base to emitter junction appears as
capacitor. Since N load transistors are there, N such capacitor appears in parallel. If capacitance
affered by one load transistor is Ci, then total capacitance would be

CTOTAL = Ci + Ci + ...

CTOTAL = NCi when driver output is LOW

when driver output goes to high from low this capacitor (CTOTAL) must be charged to HIGH
voltage by a time constant.

τ = Req.CTOTAL

where Req = 640 450+
N

 (see Figure 10.38(d))

so τ = 640 450+F
H

I
KN

NC. i

finally τ = (640 N + 450) Ci ...(10.16)

We know that smaller the τ faster is the charging of capacitor and hence smaller is the
propagation delay.

By equation (10.16) it is clear that larger the value of N larger the value of τ and hence
propagation delay is large.

The collector resistor RC is called pull up resistor because it pulls the output of gate
from low to high state. It is because when transistor is in LOW state the output capacitance
CTOTAL is discharged and for LOW to HIGH transition the output capacitance CTOTAL must
be charged to the Logic 1 voltage, the resistor RC provides the charging current path. Thus
the name pull up resistor. Since RC is passive element, this is called passive pullup.

Also note that in Fig. 10.38(a) when driver output is HIGH a current IBT is supplied
from driver side to the load side. Thus the logic is called as the current source logic,
because the driver is sourcing the current to load.

Switching Elements and Implementation of Logic Gates 415

10.3.3 Direct Coupled Transistor Logic (DCTL)
The Basic DCTL gate is a NOR gate shown in Fig. 10.39. Comparing the Fig. 10.39 with

Fig. 10.38(a) reveals the fact that DCTL is a RTL gate with no base resistor. Infact output
of driver is directly connected to load and hence the name DCTL. Naturally in this case LOW
output voltage is V VCEsat

= 0 2. and the HIGH output voltage is V VBEsat
= 0 8. . But the

output logic swing is very small (0.8 – 0.2 = 0.6 V). Thus the noise margin is poor.

Fig. 10.39 Basic DCTL NOR Gate.

The DCTL gates are simpler than RTL but suffers from a problem called current
hogging. It occurs when driver output is logic 1. The input characteristic of all the transistors
are assumed to be same in theory. But in practice it is not true. The input characteristics
of transistor of same batch differ from each other causing variation in VBEsat . Thus if VBEsat

= 0.8 V for one transistor another may have 0.798 V, some other may have 0.796 V. When
Driver’s output is logic 1, the transistor having lowest value of VBEsat (on the load side) will
enter first into saturation and will take all the current supplied by the driver side. Thus the
other transistors may not get sufficient amount of current to enter into saturation. This is
called current hogging.

10.3.4 Diode Transistor Logic (DTL)
The basic DTL gate is a NAND gate shown in Fig. 10.40. The two inputs of the gate

are applied through the diodes DA and DB which are transmitted to the base of transistor
QD through diodes D1 and D2. Output of the gate is measured at the collector of QD.

A close inspection of the circuit reveals that the input diodes along with resistor R
forms a diode AND gate whose output is available at point P. The transistor acts as
inverter, thus the output of diode AND gate is inverted to give output of DTL gate as
NAND gate.

Circuit Operation
Before describing the operation we first define value of V(0) and V(1). The output of gate

is said to be HIGH when QD is OFF and VO = VCC = +5V. Thus V(1) = +5V. The output of
gate is LOW when QD is in saturation so VO = VCEsat = 0.2 V. Thus V(O) = 0.2V. From the

416 Switching Theory

figure it is evident that voltage at point P, VP is responsible to drive the transistor in cutofff
or in saturation. Let us calculate the voltage at point P, required to turn ON the transistor,

Fig. 10.40 DTL NAND Gate.

VP(ON) = (V V VD D Q1 2 Dv v v) () ()+ +

but Vv = 0.6 V for Diodes

and Vv = 0.5 V for BJTs

so VP(ON) = 0.6 + 0.6 + 0.5

so VP(ON) = 1.7 V ...(10.17)

when A = V(0) B = V(1), the diode DA is conducting and DB is cutoff. So voltage at point
P is one diode drop above the V(0). So in this case

VP = V(0) + VDA and VDA = drop across conducting diode DA = 0.7

thus VP = 0.2 + 0.7 V(0) = 0.2V as defined earlier

VP = 0.9V ...(10.18)

Since VP < VP(ON), transistor QD is in OFF state and the output at the gate is +VCC,
i.e., V(1).

Same will be the output when A = V(1) and B = V(0) and when A = B = V(0).

when A = B = V(1), the diodes DA and DB will be in OFF state and current IR flows through
diodes D1 and D2, through base of QD. Consequently the transistor enters in saturation and the
output becomes V0 = VCEsat = 0.2 V = V(0). Let us find out the voltage at point P in this case

VP = V V VD D BE1 2 Sat+ +

where V and V VD D1 2 = 0 7. drop across conducting diodes D1 and D2 and VBESat = 0.8 V

thus VP = 0.7 + 0.7 + 0.8

so VP = 2.2 V ...(10.19)

since VP > VP (ON), QD is in ON condition and the output is low.

Switching Elements and Implementation of Logic Gates 417

From the above discussion it is clear that output of gate is low only when both A = B
= V(1), otherwise the output is HIGH. Thus the circuit behaves as NAND gates.

Example 10.5. Find out the different currents and voltages for the DTL NAND gate shown
in Fig. 10.40 in different output states. Also find out the average power dissipation in the gate.

Solution. Since the output of gate can be high or low, our calculation will be different
for these two conditions. For simplicity we first consider the output in high state.

1. When output is high

(a) Inputs A = B = V(0) or A = V(0) B = V(1) or A = V(1) B = V(0)

(b) Transistor QD in cutoff so VO = +VCC = 5V = V(1)

(c) Since QD is OFF IRC = 0, IC = 0, IB = 0, IRB = 0.

(d) Voltage at point P VP = 0.9 V by (10.18)

(e) Current IR =
V V

R
CC P− = − =

−
−5 0 9

5 10
0 82 10

3
3.

×
. ×

i.e., IR = 0.82 mA ...(10.21)

(f) Drop across resistor R is VR = VCC – VP = 4.1V

(g) Current drawn from supply in HIGH state ICC(1)

ICC(1) = IR + IRC = 0.82 × 10–3 + 0

So ICC(1) = 0.82 mA ...(10.21)

(h) HIGH state power dissipation P(1) = VCC.ICC(1)

P(1) = 4.1 mW ...(10.22)

(2) When output is low

(a) Inputs A = B = V(1) = +5V

(b) Transistor QD in ON state so V0 = V VCEsat = 0 2.

(c) Voltage at poit P VP = 2.2 V by 10.19

(d) Drop across register R, VR = VCC – VP = 5 – 2.2

So VR = 2.8 V

(e) The collector current in saturation ICsat

ICsat = I V V
R

R
CC CE

C
C

sat= − = −5 0 2
2 2 103

.
. ×

so IRC = ICsat = 2.18 mA ...(10.23)

(f) Current through register R, IR = V V
R

V
R

CC P R− = = 2 8
5 103

.
×

so IR = 0.56 mA ...(10.24)

(g) Current through resistor RB, IRB =
V
R
RB

B

but the drop across RB is same as VBEsat .

so VRB = VBEsat = 0.8 V

= drop across base to emitter
junction in saturation.

418 Switching Theory

thus IRB =
0.8 V

5 × 103

so IRB = 0.16 mA

(h) The current IB = IR – IRB by KCL at point B

so IB = 0.56 – 0.16

or IB = 0.4 mA

(i) Check for transistor in saturation. For transistor to be in saturation it must follow

hFEIB > ICsat

given hFE = 30 for QD

so hFEIB = 30 × 0.4 × 10–3

or hFEIB = 12 mA ...(10.25)

Since this is greater than ICsat = 2.18 mA, the transistor is in saturation.

(j) LOW state supply current ICC(0) = IR + IRC

= 0.56 mA + 2.18 mA

so ICC(0) = 2.74 mA ...(10.26)

(k) LOW state power dissipation P(0) = VCC.ICC(0)

= 5 × 2.74 × 10–3

so P(0) = 13.7 mW ...(10.27)

To find out average power dissipation we assume 50% duty cycle at the output i.e.,
occurrence of LOW and HIGH state is same then, the average power dissipation

Pavg =
P(1) + P(0)

2
mW + 13.7 mW

2
= 4 1.

so Pavg = 8.9 mW ...(10.28)

Loading of DTL Gate
In the loading of DTL gate we are concerned with finding out FANOUT and noise margin

for the DTL NAND gate. We assume that all the load gates are identical and input B of load
gates are connected to logic 1, for simplicity. The logic diagram is shown in Fig. 10.41.

Fig. 10.41 ADTL NAND Gate Driving N Similar Gate.

Switching Elements and Implementation of Logic Gates 419

The equivalent circuit diagram for loading of DTL gate is shown in Fig. 10.42. As
evident from Fig. 10.42 when the output V0 of driver is HIGH then all the DA diodes of load
gates are reverse biased so no current flows either from Driver to Load or from Load to
Driver.

When output of Driver is low then DA diodes of load are forward biased and a current
IL flows from each load gate towards driver gate. Since all load gates identical so they will
draw same IL (which is IR as shown in Fig. 10.42) and hence total load current from load
stage to driver state is

ILT = N.IL ...(10.29)

Also note that when diode DA of load gates conduct the output of all load gates are
HIGH. In this situation

IL = IR = 0.82 mA see equation (10.20)

thus total load current ILT = N.082 mA ...(10.30)

The current IL supplied by individual load gate is called standard load.

Fig. 10.42 DTL Gate driving N identical gates. Input B of each load gate is connected
to LOGIC 1

Thus when output of Driver is LOW the current ILT is supplied by load stage to QD in
addition to the current IRC. Thus under loading

420 Switching Theory

IC = IRC + ILT

so IC = 2.18 mA + 0.82 NmA by equations (10.23) & (10.29)
...(10.31)

But the current IC given by equation 10.31 must satisfy hFEIB > ICsat so that QD remains
in saturation and output of driver remains low. Thus we use this fact to determine FAN
OUT. So

ICsat < hFE IB

but hFEIB = 12 mA when QD is ON, by equation (10.25) then equation (10.31)

2.18 + 0.82 N < 12

Calculating for worst case 2.18 + 0.82 N = 12

or N ≅ 12

but for ICsat < hFEIB we must have N < 12.

so let us select N = 10 ...(10.32)

Noise, Margin
When output of QD is in HIGH state the Diode DA of load gates are reverse biased as

shown in Fig. 10.43 since VP = 2.2 V when input diodes are reverse biased, the amount by
which DA is reverse biased = V(1) – VP = 5 – 2.2

= 2.8 V

Fig. 10.43 Circuit situation when driver output is high.

Since Vv = 0.6V a negative spike of at least 2.8 + 0.6 = 3.4 V present at the input of
load gate will cause malfunction. Thus ∆0 = 3.4 V. It is called low state noise margin because
HIGH output of driver causes a LOW output of load.

When output of QD is LOW diode DA of load is forward biased and voltage VP on load
side will 0.9 V, by equation 10.18. And High state noise margin is given as

∆1 = VP(ON) – VP = 1.7 V – 0.9 = 0.8 V

Thus ∆1 = 0.8 V. Thus a positive noise spike of at least 0.8 V will cause circuit malfunction.

Propagation Delay is approximated by the capacitance present at the output of QD due
to load gates. When QD turns ON these output capacitance discharge quickly through QD,
thus giving low turn ON delays. But when QD goes OFF the output capacitance has to charge
through the register RC which takes large time. Thus giving large turn OFF delay. Again
register RC is pullup resistor and this type of pull up is called passive pullup as RC is
passive element.

Switching Elements and Implementation of Logic Gates 421

Current sink logic DTL is called current sink-logic because when QD is in ON state
there flows a current from Load stage to driver stage, and the QD acts as current sink for
these load currents. When QD is in OFF state output is HIGH and input diodes of load gates
are reverse biased. Practically there flows a very small amount of current from driver to load
side. This current is equal to reverse saturation current of diodes. The driver is said to be
sourcing this small current to load. Since sourcing of current is very-very small compared
to sinking the overall logic is called current sink logic.

Wired Logic when outputs of gates are tied together through a wire, as shown in
Fig. 10.44 additional logics performed. These are called wire-logic or implied logic consider
Fig. 10.44(a) to find the wired logic.

A
B

A
B

Y = Y . Y 0 1 2

Y1

Y2
Y0

(a)

+V C C

Q D 1

IR C

Y1

IC 1

Y0

Q D 2

Y2

IR C

R C R C

+V C C

(b)

Fig. 10.44 Wired-ANDing of DTL NAND gate

when Y1 = V(0) and Y2 = V(0) then Y0 = V(0)

Y1 = V(1) and Y2 = V(1) then Y0 = V(1)

when Y1 = V(1) and Y2 = V(0), then the current will flow from Y1 to Y2. Thus if Y0 is
measured with respect to ground we get Y0 = Y2 = V(0). Thus when one or both of the gate
output (Y1 or Y2) goes low, the wired output is low. Hence the above wired logic is wired-
AND logic. The same wired output can be obtained by Fig. 10.44(b). But the wired logic
increases the low state power dissipation as if one or both transistors of Fig. 10.44(b) conduct
then collector resistance becomes RC/2. Thus more current is drawn.

Also the wired logic in DTL decreases to FAN OUT. If only QD1 (in Fig. 10.44(b))
conducts then the collector current IC1 through QD1 is I I I IC RC RC RC1 = + = 2 . Thus the collector
current is doubled than that of normal case. Since hFEIB remains constant and collector
current is increased, the effective FAN OUT is reduced.

Modified DTL Nand Gate
In the analysis of DTL NAND gate we have calculated the FAN OUT by using the

equation hFEIB > ICsat . If some how IB is increased the value of hFEIB increases and the
equation hFEIB > ICsat can be satisfied for larger no. of load gates. Thus the FAN OUT can
be improved. The base current IB can be increased if the diode D1 of Fig. 10.40 is replaced
by a transistor Q1 as shown in Fig. 10.45. The register R is splitted to provide biasing of
transistor Q1. When Q1 is conducting the base current IB of transistor QD increases and thus
value of hFEIB increases significantly. As a consequance the FAN OUT of circuit shown in
Fig. 10.45 increases significantly as compared to the circuit shown in Fig. 10.40.

In the last we advise the readers to go through the DTL gate once again from beginning
as these understandings would be needed when we will discuss the TTL. This is the reason
why we have presented DTL exhaustively.

422 Switching Theory

Fig. 10.45 Modified DTL NAND gate

10.3.5 High Threshold Logic (HTL)
In the industrial environments the noise levels are high. These are mainly due to high

rating relays, various motors and variety of ON/OFF controls. In general the logic families
like RTL, DTL do not offer such a noise margin so that higher noise levels can be tolerated.
Infact due to lower noise margin the circuit will malfunction most of the time.

To suit the industrial application, modified DTL gate, shown in Fig. 10.45, is redesigned
with higher +VCC supply and increased value of resistance and diode D2 is replaced by a
zener diode, as shown in Fig. 10.46. The overall circuit provides same current level as that
of DTL NAND gate. As evident from the circuit, the noise margins are dramatically improved.
But presence of larger resistances severely affects the switching speed, causing the propagation
delay in hundreds of nano seconds.

Fig. 10.46 Basic HTL NAND GATE

Switching Elements and Implementation of Logic Gates 423

10.3.6 Transistor Transistor Logic (TTL)
The DTL NAND gate shown in fig. 10.40 has simple and stable circuit design but has

the larger propagation delay due to which it was obselete. The main cause of large propagation
delays are diodes present in DTL. There were three main reasons for their slower speed.

1. Inputs are taken through diodes which are slower devices.

2. When output goes to HIGH, the output capacitance charges through collector
resistance RC which is slow process.

3. When output goes to HIGH transistor QD goes to cut off from saturation D1 and
D2 are non conducting and excess charge stored in base must be removed through
RB, which is a slow mechanism.

All these can be avoided if the diodes DA, DB, D1 and D2 of DTL gate are replaced by
transistor. The modified circuit, called TTL shown in Fig. 10.47, offers a significant improvement
in propagation delay. A close inspection of the circuit and its comparison with Fig. 10.40
reveals that it is a DTL gate in which diodes DA and DB are replaced two E-B junctions of
Q1, diode D1 is replaced by B-C junction of Q1 and diode D2 is replaced by B-E junction of
transistor Q2. Thus all the discussion of DTL would be valid with slight modifications. The
capacitor CO is output capacitance that must be charged to the logic value of output. Before
proceeding further let us assume that V(0) = 0.2V (VCEsat) and V(1) = 5V (+VCC).

Fig. 10.47 TTL NAND Gate with Passive Pullup.

Let us define a voltage V (ON),B1 that is minimum voltage required at Base of Q1 to
forward bias B-C junction of Q1 and to drive Q2 to Q3 in conduction. It is given as

V (ON)B1 = (V V VBC CUTIN Q Q2 3
) () ()+ +v v

= 0.6 + 0.5 + 0.5

so V (ON)B1 = 1.6 V ...(10.33)

When either or both the inputs are LOW The B-E junction of Q1 conducts, thus the
voltage at base B1 is

VB1 = V(0) + VBEACTIVE = +0 2 0 7. .

424 Switching Theory

so VB1 = 0.9 V ...(10.34)

Since V V (ON)B B1 1< , transistor Q3 is OFF and the output voltage Vo = +VCC = V(1).

When both the inputs are HIGH The B-E junction of Q1 is reverse biased. If we
assume that Q2 and Q3 are working then the voltage at base B2 is given as

VB2 = V VBE Q BE Qsat
2

sat 3b g + = +() . .0 8 0 8

or VB2 = 1.6 V ...(10.35)

Since base B1 is connected to +VCC through resistor R, the C-B junction will be forward
biased and transistor Q1 is said to be working in inverse active mode. This causes current
IC1 to flow in reverse direction and thus driving Q2 and Q3 in saturation. Thus the output
voltage Vo = V V = V(0).CEsat = 0 2.

To understand improvement in propagation delay let us consider that both the inputs
are HIGH and output of gate is LOW. Thus by equation (10.35), V V.B2 = 1 6. If suddenly any
one of the input goes LOW then corresponding drop at base B1 is VB1 = 0.9V. The Q2 and
Q3 can not turn OFF immediately as excess charge is stored at their base. So at this
instant VB2 = 1.6. This causes reverse biasing of B-C junction of Q1, where as B-E junction
of Q1 is already forward biased by LOW input. Thus Q1 works in ACTIVE region. This is
why we have taken VBEACTIVE while calculating equation (10.34). While Q1 is in active region
it conducts a large collector current IC1 in a direction opposite to IB2. This causes very fast
removal of excess charge carriers from base of Q2 and Q3. Thus the propagation delay is
reduced.

PASSIVE LULLUP As evident from figure register RC3 is pullup resistor for the
reasons stated earlier. Since RC is passive element the circuit is called passive pullup
circuit. In contrast to this, the resistor RE is called pull down resistor, as drop across RE
turns ON the Q3 and consequently output goes LOW from HIGH state.

NOTE that if in Fig. 10.47, we use single emitter transistor, then the circuit becomes
TTL Inverter or TTL NOT gate.

Propagation Delay
Propagation Delay is determined by charging and discharging of output capacitance

CO (Fig. 10.47) and removal of excess charge carriers from base of Q3. CO is the capacitance
that appears when looking from the output of logic gate. When the output is HIGH, CO
is charged to +VCC. When output makes HIGH to LOW transition the Q3 goes to saturation.
Thus CO can discharge through ON transistor Q3. Since the resistance offered by the
transistor Q3 in saturation very small, CO can discharge quickly to V(0), through the path
shown in Fig. 10.47. When output makes LOW to HIGH transition, the excess charge of
base of Q3 removed by active mode working of Q1 and CO charges to V(1) (or +VCC)
through resistor RC3 as shown in Fig. 10.47. Thus the charging time constant τ = RC3 .
CO is a bit large, thus charging of CO to V(1) is slower. This limits the switching time
of gate. One way to improve is reducing RC3 but it will increase the collector current.
This will increase the power dissipation and reduce the FAN OUT. Another way is to use
active pull up arrangement, which is discussed is subsection 10.3.62.

Switching Elements and Implementation of Logic Gates 425

Clamping (or Protective) Diodes are used to protect the circuit from damages
that can occur due to excess current because of presence negative voltage at input. The
input to TTL gates are always positive. Arrangement of clamping diodes is shown in
Fig. 10.48. These diodes can clamp up the negative undershoot of approximately up to
–0.7 V.

Fig. 10.48 Clamping diodes Fig. 10.49 Open collector
at input output of TTL

Open collector output When the collector resistance RC3 of Fig. 10.47 is removed and
collector of output transistor Q3 is made available directly as IC pin, the output is called open
collector output. However these outputs must be connected to +VCC through an external
resistor, before taking the output.

Wired ANDING If the output of two TTL gates are wired together then the logic
performed is AND. The explanation is same as DTL. For reasons stated for DTL, wiring of
TTL gates reduce the FANOUT. To improve the FANOUT open collector output can be used
under wired logic condition.

For this purpose, first all the open collectors are tied together and then a single
collector resistance is connected to +VCC from this joint. This ensures that collector
resistance for all the gates remains same (which became RC/2 in DTL and Passive Pullup
TTL) and hence the collector current does not increase through output transistor Q3 of all
gates. Thus the FAN OUT can be improved than the FAN OUT obtained by wiring of
passive pullup TTL.

Floating Inputs of TTL are treated as logic 1 by the circuit. It is because when an
input is HIGH the corresponding B-E junction is reverse biased and no current flow through
it. Similarly when a input is unconnected i.e., floating, no current flows through it. Thus the
floating inputs are treated as logic 1. But floating TTL inputs can easily pickup the noise and
circuit can malfunction. Thus it is highly recommended that unused TTL inputs should be
tied to +VCC.

10.3.6.1 Specifications of Standard TTL
The various current and voltage parameters, propagation delays are summarized in

Fig. 10.50 and Table 10.5. These parameters are defined in subsection 10.2.2

426 Switching Theory

Fig. 10.50 Input/Output profile of standard TTL.

Table 10.5 : Parameters of standard TTL

 Parameter Typical Value

tPHL 15 n sec

tPLH 20 n sec

ICC(1) 8 mA

ICC(0) 22 mA

NOISE MARGIN 0.4 V

FAN OUT 10

Example 10.6. Find out the FAN OUT, figure of merit, noise margin average power
dissipation for a TTL gate with the help of datas given in Figure 10.50 and Table 10.5.

Solution. To calculate FAN OUT consider the Figure 10.51 from figure it is clear that

IOH = –NIIH ...(10.36(a))

and IOL = –NIIL ...(10.36(b))

by using the datas of figure 10.50 we have

IOH = –400 µA and IIH = 40 µA

IOL = 16 mA and IIL = –1.6 mA

Fig. 10.51 Loading of TTL

by using equation (10.36(a)) HIGH STATE FAN OUT N = − I
I
OH

IH

Switching Elements and Implementation of Logic Gates 427

so N = − − =400
40

10µ
µ

A
A

by using equation (10.36(b)) LOW state FANOUT N = − I
I
OL

IL

so N =
−
−

=16
1 6

10mA
mA.

The FAN OUT of a gate is lowest of HIGH STATE FAN OUT and LOW SATE FAN OUT.
Since in TTL, both are same so for standard TTL, FAN OUT = 10.

the propagation delay tp =
t tPHL PLH+

2

= +15 20n n sec
2

(by Table 10.5)sec

so tp = 17.5 n sec

High state Noise margin ∆1 = VOH – VIH

= 2.4 – 2.0 (by Figure 10.50)

= 0.4 V

Low state Noise margin ∆V = VIL – VOL

= 0.8 – 0.4 (by Figure 10.50)

= 0.4 V

The average power dissipation Pavg =
P(1) + P(0)

2
P(1) = VCC.ICC(1)

= 5 × 8 × 10–3 (by Table 10.5)

so P(1) = 40 mW

P(0) = VCC.ICC(0)

= 5 × 22 × 10–3 (by Table 10.5)

= 110 mW

so Pavg =
40 mW + 110 mW

2
so Pavg = 75 mW

figure of merit = Pavg × tp

= 75 mW × 17.5 n sec = 1312.5 pJ

10.3.6.2 T T L With Active Pullup
In the basic TTL NAND gate circuit (Fig. 10.47) the speed of operation is limited mainly

due to the charging of output capacitance CO. Since CO charges through RC3 process is time
consuming. If the resistance RC3 is replaced by a transistor Q4 and a diode D, as shown in
Figure 10.52, then the delays can be reduced. Since the transistor Q4 (which is an active

428 Switching Theory

device) provides the charging current to output capacitance CO, the circuit shown in Fig.
10.52 is called as active pullup circuit, and the output is called active pullup output. Also
note that transistors Q4 and Q3 forms a totem-pole pair, and hence the output is also called
as totem pole output. Transistor Q2 acts as phase splitter for totem pole transistor pair.
Advantage of active pullup is increased speed without increasing power dissipation. The
purpose of using Diode D is to keep transistor Q4 in cutoff when output of gate is LOGIC O.

Fig. 10.52 TTL NAND Gate with Active Pullup.

When both the inputs are HIGH transistor Q3 conducts and the output of gate is
LOW i.e., V(0) = V V.CEsat = 0 2.

When any of input goes LOW then transistor Q4 conducts and enter into
saturation. This causes charging of output capacitance CO through Q4 and diode D. As
the CO starts charging towards V(1) i.e., HIGH, the current through Q4 decreases. The
transistor Q4 goes to cutoff as soon as CO charges to V(1). Infact under steady state Q4
just comes out of conduction. Hence the output voltage when output is HIGH can be
given as

V(1) = VCC – (V (VQ D3v v))−

V(1) = 5 – 0.5 – 0.6

so V(1) = 3.9 V ...(10.37)

Effect of Q4
Let us see the effect of Q4 in the circuit. Due to Q4 the value of V(1) is reduced

to 3.9 V as calculated in equation 10.37. Secondly, the transistor Q4 causes a large
current spike to appear in the circuit when output makes a transition from LOW to
HIGH. Thus if frequency of input is high then Q4 turn ON for larger number of times
per second. Hence the average power dissipation is increased if the gate is operated at
High frequency.

Example 10.7. Explain how diode D of Figure 10.52 keeps the pullup transistor of TTL
gate in cutoff when output in LOW state.

Solution. When the output of gate is in LOW state V0 = V(0) = 0.2 V. At this time
tansistor Q2 and Q3 are in saturation. Thus voltage at collector of Q2 is given as

Switching Elements and Implementation of Logic Gates 429

VC2 = V VBE Q CE Qsat
3

sat
2

b g b g+ = +0 8 0 2. .

so VC2 = 1.0 V

Since base of Q4 and collector of Q2 are connected together so

VB4 = VC2 = 1 0. ...(10.38)

Thus the drop across B-E junction of Q4 and Didoe D is given as

V = V V(0)B4 − see Fig. 10.52

= 1.0 – 2.0

i.e., V = 0.8 ...(10.39)

is drop between point B4 and C3 in Fig. 10.52 for Q4 and D to conduct cutoff value required

Vv = () () .V VQ D4v v+ = +05 0 6

Vv = 1.1 V

Since drop between B4 and C3 V < Vv Q4 and D are in cut off. If diode is not present
then Vv = ()V Q4v = 0.5V, then V > Vv and transistor Q4 will be in conduction. Thus presence
of diode D keeps Q4 in cut off when output is LOW.

Example 10.8. Explain how transistor Q4 turns ON during LOW to HIGH transition of
output. Calculate the current spike magnitude due to this transition.

Solution. Let the output is in steady state LOW. At this moment the transistor Q3 is
in saturation and Q4 is in cutoff, because all inputs are HIGH. If suddenly any of the input
goes LOW then the corresponding B-E junction of Q1 conducts. As a consequence the transistor
Q2 and Q3 goes to cutoff. Since Q2 is going to cutoff its collector voltage rises. Consequently
the voltage at base B4 rises. This causes Q4 to enter into saturation. But the output cannot
change instantaneously, as output capacitance CO cannot change its state instaneously. So
the voltage at base B4 at this instant.

VB4 = V V V(0)BE Q Dsat
4

b g + +

= 0.8 + 0.7 + 0.2

so VB4 = 1.7 V ...(10.40)

Thus IB4 =
V V

R
CC B

C

4

2

−
 no IC2 flows as Q2 is in OFF state.

=
5 − 1 7

1 4 103
.

. ×

so IB4 = 2.36 mA ...(10.41)

the current IC4 =
V V V V

R

CC CE Q D O

C

sat
4

4

− − −b g
 =

5 0 2 0 7 0 2
100

− − −. . .

so IC4 = 39 mA.

Thus the current drawn from supply during the transition I = I I mA + 2.36 mAC B4 4+ = 39

So I = 41.36 mA ...(10.42)

430 Switching Theory

Thus high current spike is generated during LOW to HIGH transition of output. This
current supply increases the power dissipation and generates noise in power supply distribution
by drawing a current spike for short duration.

WIRED LOGIC is not recommended in TTL with active pullup. We have seen in example
10.8, during the LOW the HIGH transition of output high current spike is generated.
Performing wired logic with active pullup will increase this spike. This excessive current can
damage the whole circuit.

10.3.6.3 Schottky TTL
We have seen that the switching speed of TTL gates are limited mainly due to the

storage time delay required by a transistor to go to CUTOFF from saturation. Although
the transistor Q1 of basic TTL gage helps fast removal of excess charges but the fact that
transistor Q3 will be driven into saturation makes the device slower. If the schottky
transistors are used to create the TTL NAND gate circuit, speed will be high. It is
because, as discussed in subsection 10.1.34, the schottky transistor are never driven hard
into saturation, rather they are on the verge of saturation. Hence transistors operate in
active region. This means there is no excess charge carriers accumulated because
transistors are not saturated. Hence speed of operation is improved. The TTL gates
employing schottky transistors have propagation delay as low as 2 n sec. Since transistors
in this family are not driven in saturation, schottky family is called NON SATURATED
LOGIC FAMILY.

10.3.6.4 TTL Series
As discussed we have different form of TTL circuits, suited for different applications and

requirements. This evolved different series of TTL circuits available in ICs. Some of them
are obselete and some of them are still in use. In particular the 74 XX and 54XX series are
popular. The 74XX series is used for general purpose, and consumer applications where as
54XX series is used for military applications. Obviously the temperature range of two types
differs. The 74XX has supply range 5 V 5%± where as 54XX has supply range 5 V 1 %± 0 .
For most practicle purposes 74XX series are used. The 74XX series is further divided in five
categories summarised in Table 10.6.

Table 10.6 : Categories of TTL

TTL Series Letter Prefix Examples

Standard TTL 74XX 7402, 7404

HIGH Power TTL 74HXX 74H02

LOW Power TTL 74LXX 74L02

Schottky TTL 74SXX 74SO2

Low Power Schottky TTL 74LSXX 74LSO2

Out of the five categories 74LSXX series is most popular. We next present summary of
various specifications of TTL ICs in Table 10.7.

Switching Elements and Implementation of Logic Gates 431

Table 10.7 : Specifications of various TTL families

Series

Parameters 7400 74H00 74LOO 74SOO 74LSOO

VOH 2.4 V 2.4 V 2.4 V 2.7 V 2.7V

VOL 0.4 V 0.4 V 0.4 V 0.5 V 0.5 V

VIH 2.0 V 2.0 V 2.0 V 2.0 V 2.0 V

VIL 0.80 V 0.8 V 0.7 V 0.8 V 0.8 V

IOH –400µA –500 µA –200 µA –1000 µA –400 µA

IOL 16 mA 20 mA 3.6 mA 20 mA 8 mA

IIH 40 µA 50 µA 10 µA 50 µA 20 µA

IIL –1.6 mA –2.0 mA –0.18 mA –2.0 mA –0.36 mA

tPHL 15 n sec 10 n sec 60 n sec 5 n sec 15 n sec

tPLH 22 n sec 10 n sec 60 n sec 4.5 n sec 15 n sec

ICC (1) 8 mA 16.8 mA 0.8 mA 16 mA 1.6 mA

ICC (0) 22 mA 40 mA 2.04 mA 36 mA 4.4 mA

FAN OUT 10 10 20 10 20

Note that specifications of standard TTL were already presented in subsection 10.3.61,
but are summarized in Table 10.7 for comparison. Although the data presented in table 10.7
are typical for TTL families, we highly recommend to refer to manufacturers data sheet for
exact ratings. Note that from table 10.7 it is very much evident that lower propagation delay
comes at the cost of increased power dissipation.

10.3.7 Emitter Coupled Logic (ECL)
ECL is another NON Saturated LOGIC FAMILY in which transistors are driven into

cutoff and active region. The ECL family offers improved noise performance and is fastest
of all logic families. Infact propagation delays as low as 1 n sec are possible with ECL. Basic
ECL gate is described in subsection 10.3.72.

Infact the basic TTL, DTL, RTL etc. all have limits on their speed because they
are based saturation region operation of transistors. If transistors are driven in active
region, then the speed can be dramatically improved. But active region spans to a small
voltage width and small temperature variations, component drift can shift the transistors
to saturation. Thus stable operation in active region is difficult. A high emitter resistance
can solve this problem, but poses another problem. It makes difficult to turn the
transistor in active region from cutoff region with small voltage change at input. The
problem can be solved if current drawn by the transistors from supply is not switched
OFF and ON. The difference amplifier is a circuit in which current drawn from supply
is never switched OFF, rather it is shifted from one transistor to another. Also note
that using difference amplifier offers high CMRR, means there is effective rejection of
noise.

The basic ECL gate is formed around a difference amplifier only. The logic operations
are performed by difference amplifier and its outcome is given to output stage. For this
reason we first present simplified description of difference amplifier and then move to the
basic ECL gate circuit.

432 Switching Theory

10.3.7.1 Difference Amplifier
Basic configuration of a difference amplifier is

shown in Fig. 10.53. Voltage at the base of transistor
Q2 is kept constant by supplying a voltage VR. The
values of resistor R R and VE C R1 2, are choosen such
that Q2 operates in active region. Whenever an input
V VRi1 > is applied to the base of Q1, the transistor Q1
conducts in active region and Q2 goes to cutoff. The
situation is reversed when Vi1 is well below the VR.
Let us see how it is happening.

When Vi1 << VR i.e., when Vi1 < (Vv)Q1. At this
time Q2 start conduction causing a current to flow
through the emitter resistance RE. The current through
emitter resistor RE is

IE = I IE E1 2+

= I as IE E2 1 = 0

Thus the drop across the emitter resistance RE is

VRE = VE = I RE E2 ...(10.43)

Since Q2 is conducting the drop VE is such that (V VBE Q2
) .> v

When V = Vi R1 As soon as Vi1 exceeds Vv for Q1, it starts conduction and when Vi = VR
both the transistors conduct same current, through them. This reduces the forward biasing
of Q2. Because,

(VBE Q2) = V VB E2 2−

= V VR E2−

(VBE Q2) = VR – VE ...(10.44)

and VE = (I I RE E E1 2+) ...(10.45)

When V Vi R1 > Q1 conducts more heavily and Q2 conducts less because VE increases
further when V VRi1 > . It is because

VBE Q1
b g = V VB E1 −

but VB1 = Vi1 applied input

so VE = V VBE Q1
i1 − b g

VE = Vi1 0 7−(10.46)

Thus if Vi ↑ it causes VE↑.

By equation (10.44) VBE Q2
b g = VR – VE

So if VE↑ is causes (VBE Q2) B

Fig. 10.53 Difference Amplifier.

Switching Elements and Implementation of Logic Gates 433

So we can conclude that when Vi1 A we get VBE Q2
b g B and if Vi1 is sufficiently high

V VBE Q2
b g < v. Consequently Q2 turn off and only Q1 remains in conduction. Thus the current
IE is flowing only due to IE1. Hence applying V VRi1 > the current IE is shifted from Q2 to Q1
without turning OFF the supply, which is the requirement.

10.3.7.2 ECL OR/NOR Gate
The basic ECL gate is shown in Fig. 10.54. As earlier stated it is a non saturated logic

family. The transistors used in this family needs slightly high specifications than those we
have discussed earlier. Typically they require

Vv = 0.7V

VBEACTIVE = 0.75 V

High β, hFE = 50 to 150

Circuit Description
The circuit essentially is divided in three parts. They are input stage, difference amplifier

and emitter followers or level translators. Note that the VCC = 0, i.e., grounded and a
negative supply is used. Thus the directions of current is conventional. Use of negative
voltage offers better noise performance and protects the circuit from accidental grounding.

The input transistors are used to take logic inputs A and B. The two transistors are
replaced for transistor Q1 of Fig. 10.53.

Second stage is difference amplifier, which is heart of the circuit. All the logic operations
are performed by this stage only. Also note that emitters of tansistors in this stage are
connected together and thus the name emitter coupled logic.

Fig. 10.54 Basic ECL OR/NOR Gate

434 Switching Theory

The use of emitter followers increases the resistance that appears at emitter of difference
amplifier, which is desired. It is also use to shift the output voltage such that output level
and input voltage levels corresponding to V(0) and V(1) are same.

Circuit Operation
When all the inputs are LOW transistors Q1 and Q'1 are OFF and Q2 is ON. This

causes a current IC2 to flow through the resistor RC3 , and consequently collector of Q2 goes
LOW. This is provided at the output through Q4 at YOR output. Since current through RE
only due to Q2, voltage at common collector of input VO1 goes HIGH and this is provided at
output YNOR through transistor Q3. Thus when all inputs are LOW i.e.,

A = B = LOW YOR = LOW and YNOR = HIGH.

When either or both inputs are HIGH the transistor Q2 goes to cutoff and input
transistor(s) conduct causing a current IC1 to flow through resistor RC1 . This causes the
voltage VO1 to go LOW and this is provided at the output YNOR through transistor Q3. Since
Q2 is in cutoff voltage VO2

 at its collector goes HIGH, which is provided at output YOR
through transistor Q4. Thus

when A = B = HIGH

or A = HIGH and B = LOW or A = LOW and B = HIGH

then YOR = HIGH and YNOR = LOW

The above discussion adequately concludes that
the output available at YOR = A + B and YNOR
= A +B. Unlike other gates, the ECL gate provides
complementry outputs, which is helpfull in many
of the design problems. The symbol of ECL OR/
NOR gate is shown in Fig. 10.55.

OPEN EMITTER OUTPUT In high speed
digital application the resistors R and RE E3 4 are not
connected and the emitters of Q3 to Q4 are available
directly as the output pin of IC, as shown in
Fig. 10.56. Infact in such applications the IC output
is used to drive the load line directly. The load
line at the other end is terminated by the
characteristics impedance of load line.

10.3.7.3 Circuit Analysis
In this subsection we are concerned with the calculate of various parameter. The main

reason to separate this analysis from previous subsection is to simplify the discussion.

Let us first consider that all inputs are low

In this situation all input transistors are cutoff, only Q2 will conduct. Thus

IE1 = 0

Voltage at point E, VE = V VR BE Q2
− b g

= –1.15 – 0.75

VE = –1.9 V ...(10.47)

Fig. 10.55 Symbol of ECL
OR/NOR Gate

Fig. 10.56 Open emitter output.

Switching Elements and Implementation of Logic Gates 435

thus current IE =
V V

R
 mAE EE

E

− = − − − =1 9 5 2
1 18 10

2 79663
. (.)
. ×

.

So IE ≅ 2 8. mA ...(10.48)

Since Q2 in active region I IB C2 2< < so I I IC E E2 2≅ =

thus IC2 ≅ 2 8. mA

So voltage across collector resistance RC2 is given as

VRC2 = I RC C2 2. . × ×= −2 8 10 3003

VRC2 = 0.84 V

So voltage at collector of Q2, is given as

VO2 = V VCC RC2− = −0 0 84.

So VO2 = –0.84 V ...(10.49)

At this time Q4 is conducting, so

YOR = V VO BE Q2
4

− = − −b g 0 84 0 75. .

So YOR = –1.59 V ...(10.50)

At this time YOR is considered LOW, see circuit operation, so

V(O) = –1.59 V ...(10.51)

since Q1 and Q1' are in cutoff V OV,O1 = thus V V OV.C B3 3= = Thus B-E-junction of Q3
acts as diode. Thus

YNOR = V VCC BE Q3
− = −b g 0 0 75.

so YNOR = –0.75 V ...(10.52)

At this time YNOR is HIGH, see circuit operation, so

V(1) = –0.75 V ...(10.53)

At this time IE3 =
Y V

R
mANOR EE

E3

− = − − − =0 75 5 2
1 5 10

2 9663
. (.)
. ×

.

So IE3 ≅ 3 mA ...(10.54)

Let input A = HIGH In this case Q1 will be conducting and Q2 will be in cutoff. So

VE = V V V(1)1 1BE Qi − = − = − −() . . .0 75 0 75 0 75

So VE = –1.5V ...(10.55)

since V(1) = –0.75 V

In this case emitter current IE is due to Q1 only.

So IE1 = I V V
R

E
E EE

E
= − = − − − = −1 5 5 2

1 18 10
3 13559 10

3
3. (.)

. ×
. ×

So IE1 = I mAE ≅ 3 14. ...(10.56)

VO1 = V VCC RC1− = 0 – 3.14 × 10–3 × 267 as I IC E1 1≅

436 Switching Theory

So VO1 ≅ − 0 84. V ...(10.57)

and YNOR = V VO BE Q1
3

− = − −b g 0 84 0 75. .

So YNOR = –1.59 V = V(0) ...(10.58)

So same voltage corresponding to LOW output is obtained, which justifies the use of
level translators. In the similar way

YOR = –0.75 V = V(1)

Example 10.9. Find out the Noise margin and average power dissipation by the ECL gate.

Solution. To find out noise margin we must find out the base to emitter drop of
transistors when they are in cutoff.

When YOR = LOW Q1 and Q1' are in cutoff as A = B = V(0)

VBE Q1
b g = VB – VE = V(0) – VE

then by equation 10.47 and 10.51

VBE Q1
b g = –1.59 – (–1.9)

= 0.31V

So VBE Q1
b g ≅ 0.3 V

but for ECL transistors are choosen with Vv = 0.7 V.

So a positive noise of 0.4 V will make Q1 in conduction. Thus

∆O = 0.4 V ...(10.59)

Similar situation occurs when YOR = HIGH and Q2 is in cutoff. At this time also

VBE Q2
b g ≅ 0.3 V

and hence ∆1 = 0.4 V ...(10.60)

Note that, if we take transistors with cutin voltage of 0.5 V we will get nose margin of
0.2V. Thus using transistors of high cutin voltages are advantageous.

To find out average power dissipation we must find out the HIGH state and LOW state
supply current.

When YOR = LOW, then by equations (10.48) and (10.54) we get

IE = 2.8 mA and I mAE3 = 3

and IEE (O) = I + I IE E E3 4+

we’ve IE4 =
Y V

R
mAOR EE

E4

− = − − − =1 59 5 2
1 5 10

2 40663
. (.)
. ×

.

So IE4 ≅ 2.41 mA ...(10.61)

thus IEE(O) = 2.8 mA + 3 mA + 2.41 mA

or IEE(O) = 8.21 mA ...(10.62)

when YOR = HIGH then by equation (10.56)

IE = 3.14 mA

Switching Elements and Implementation of Logic Gates 437

at this time I mA and I mA,E E4 3= =3 2 41. as situation for transistors Q3 and Q4 are just
reversed.

so IEE (1) = 3.14 mA + 3 mA + 2.41 mA

or IEE (1) = 8.55 mA ...(10.63)

we’ve Pavg =
P(O) + P(1)

2
I I

VEE EE
EE= +() ()

.
0 1

2

=
8 21 5 2. . .mA + 8.55 mA

2
V = 43.576 mW

or Pavg ≅ 43 6. mW ...(10.64)

FAN OUT of ECL gates are higher. It is because they offers low output impedance and
high input impedance. When all inputs are LOW input transistors offers high input impedance.
When any input is HIGH then input impedance of emitter followers appears at input stage,
which is already high. Thus input impedance of ECL gate is always High. At the output side
Q3 and Q4 are always conducting either as diode or transistors. So output impedance is
always low. Hence FANOUT is HIGH.

Wired Logic performed by the ECL gates are OR. Hence if we simply wire the output
of ECL gates we can obtain variety of functions. This is illustrated in Fig. 10.57.

Fig. 10.57 Illustration of wired logic for ECL gate.

Let us see how wired logic comes. Consider the wiring of only YOR output as shown in
Fig. 10.58(a). Before proceeding further we reinsert that all the voltages are measured with
respect to ground.

Fig. 10.58 Illustration of wired-or ing in ECL

438 Switching Theory

When both are LOW i.e., Y1 = V(0) = –1.59 V = Y2 then Y = –1.59 V as Y1 and Y2 forms
two equipotential points. Hence Y = V(0) = LOW.

When both Y1 and Y2 are HIGH i.e., Y1 = Y2 = V(1) = –0.75 then Y = –0.75. So

Y = V(1) = HIGH.

When Y1 = V(1) = –0.75 and Y2 = V(0) = –1.55 V then when we measure Y with respect
to ground we get Y = –0.75 V1 as shown in Fig. 10.58(b). Thus Y = V(1) = HIGH.

This concludes that wiring two outputs of ECL gates perform wired-OR.

10.3.8 MOS Logic
MOS Logic have become popular logic because of their high packing density. As indicated

in the beginning the MOS devices, however have larger propagation delays and thus have
slower speed than the bipolar logic families. But in present days due to advancements in
VLSI technologies, MOS devices can be fabricated even in much smaller areas, which implies
that propagation delays will be low. If the present trend continue, MOS families may match
the speed of the bipolar families. Another advantage of MOS is, we can use only MOS devices
without using any resistor. A MOS device itself can be configured as resistance as shown in
Fig. 10.59. When configured as load the MOS devices offers approximately 100 KΩ resistance.
Even though either enhance mode or Depletion mode devices can be as load, preferred are
depletion mode load. It is because the depletion mode MOS have maximum current when
gate voltage is O. It is good to use MOS as load resistance because a normal resistor takes
area 20 times of area taken by a MOS device.

Fig. 10.59 NMOS as Load or resistor.

10.3.8.1 NMOS Gates
The various gates are shown below.

NOT GATE Basic NMOS NOT gate is shown in figure 10.60. Transistor Q2 is adepletion
mode transistor acting as load. Transistor Q1 is driver transistor which performs logic operation.

When Vin = V(0) = 0, transistor Q1 does not conduct and acts as open circuit as shown
in figure 10.60(b). Thus +VDD appears at the output, which is a HIGH voltage. So we get
when Vin = V(0) = LOW, V0 ≅ +VDD = V(1) i.e., Y = HIGH.

When Vin = V(1) = +VDD transistor Q1 start conduction and a current flows through the
circuit. In this case transistors Q1 acts as switch is closed, Condition, as shown in Fig. 10.60
(c). Thus ground voltage or OV appears at the output which is LOW state. Thus

when Vin = (1), VO = OV = V(0) i.e., Y = LOW.

Switching Elements and Implementation of Logic Gates 439

Fig. 10.60 NMOS Inverter with Depletion Load.

From the above discussion it is also clear that the circuit shown in figure 10.60(c) is a
NOT gate with the voltage levels V(0) = 0 V and V(1) = +VDD.

NAND GATE The NMOS NAND gate is shown in Fig. 10.61. As usual transistor Q3 is
load transistor and Q1 and Q2 are driver transistor which performs logic operation. From the
circuit we observe that when A = B = HIGH = V(1), then Q1 and Q2 conducts and current
IDD can flow in the circuit. In this situation Q1 and Q2 acts as switch in closed condition.

Fig. 10.61 NMOS Nand gate Fig. 10.62 NMOS Nor gate
with depletion load. with depletion load.

Thus Y = V(0) = OV when A = B = V(1). If A = V(0) and B = V(1), then Q2 acts as switch
in open condition. Consequently IDD can not flow in the circuit and Y = +VDD = V(1). Similar
situation occurs when B is LOW and when both A and B are LOW. Thus the circuit gives
Y = LOW when both A and B are HIGH otherwise = Y = HIGH. This clearly indicates that
the circuit in Fig. 10.61 acts as NAND gate. Also note that the power dissipation will be low
in this gate as current is drawn from +VDD only when both the inputs are HIGH. In all other
situations no current is drawn.

440 Switching Theory

NOR GATE The NMOS NOR gate is shown in Fig. 10.62. Transistor Q3 is load transistor
and Q1 and Q2 are drivers which perform logic operation. It is evident from circuit that when
both A = B = V(0), Q2 and Q3 does not conduct and current IDD does not flow. Thus Y = +VDD
= V(1) = HIGH. If any of the inputs goes HIGH current IDD-flows and consequently Y = OV
= V(O) = LOW. Thus the output is HIGH only when all inputs are LOW other-wise output
is LOW, which is clearly a NOR gate. Note that power dissipation in NOR gate is higher than
NAND gate. It is because the current IDD does not flows only when both inputs are LOW.
In all other input conditions current will flow in the circuit, and hence power dissipation is
higher than NMOS NAND gate.

10.3.8.2 CMOS Gates
A logic circuit that combines p-channel and n-channel MOS transistors on the same chip

is known as complementary MOS or CMOS circuit. Major advantage of CMOS is very low
power dissipation. Since technology has improved such that a very small chip area is required
to fabricated MOS devices the CMOS can now operate on faster speed. Indeed the CMOS
circuits have already replaced TTL in many practical applications. CMOS can operate over
a supply range of 3.3 V to 15V. Lowpower CMOS circuits have emerged with supply of 3.3
V (as power dissipation is proportional to VDD

2), but lower power supply reduces the noise
immunity.

Fig. 10.63 (a) CMOS Inverter (b) Simplified circuit schematic.

Fig. 10.64 CMOS inverter equivalent circuits.

Switching Elements and Implementation of Logic Gates 441

Fig. 10.65 Voltage transfer characteristics of CMOS Inverter.

CMOS INVERTER The basic CMOS gate is a NOT gate, called CMOS inverter shown
in Fig. 10.63. Transistor Q1 is an enhancement mode NMOS transistor and transistor Q2 is
enhancement mode PMOS transistor. The circuit operation is simple.

When Vin = V(0) transistor Q1 acts as open circuit and transistor Q2 acts as close
switch. Thus the supply voltage +VDD is connected at output. Hence Y = +VDD = V(1). This
is shown in Figure 10.64(a).

When Vin = V(1) transistor Q2 acts as open circuit and Q1 acts close switch. Thus the
ground is connected at the output. Hence Y = OV = V(0). This is shown in figure 10.64(b).

From the above discussion it is clear that circuit of Figure 10.63 acts as inverter.

Static Power Dissipation is the dissipation calculated when the output is static i.e.,
output is steady state HIGH and LOW. From the above discussion it is clear that when Y
= HIGH, Q1 is open circuit so no current flows in the circuit. Similarly when Y = LOW,
Q2 is open circuit so no current flows in the circuit. Thus in either the case no current flows
in circuit (as leakage currents are negligibly small). Thus zero static current flows and
consequently zero static power dissipation.

Transfer characteristics of CMOS inverters is shown in figure 10.65. It is the curve
of input voltage Vs output voltage which explains the operation of CMOS inverter in detail.
The curve indicates that output voltage makes a sharp transition when input voltage passes
through a value Vth. The voltage Vth is called threshold voltage around which the change in
output takes place. The voltage Vth is such that if Vin < Vth – δ (or VIL) the output Y = +VDD
and if Vin > Vth + δ (or VIH) the output is Y = OV. Clearly the value of δ is very small. This
does mean that the input signal need not be exactly equal to +VDD or OV to produce correct
output. There is a room for some error, called noise. The LOW state and HIGH state noise
margins are shown in figure, and calculated as below

∆1 = VOH – VIH

For figure VOH = +VDD and VIH = Vth + δ
So ∆1 = VDD – (Vth + δ)

or ∆1 = VDD – Vth – δ ...(10.66)

Similarly ∆O = VIL – VOL

442 Switching Theory

= Vth – δ – O from figure

or ∆O = Vth – δ ...(10.67)

This clearly indicates high noise immunity of logic gates.

Dynamic Power Dissipation is the dissipation that occurs when the gate is changing
its output state i.e., when output is going HIGH to LOW or LOW to HIGH. As indicated by
transfer characteristics, around the Vth there is situation when both Q1 and Q2 are conducting
for a short while. It is because the devices can not change its state instantaneously. This
produces a short current pulse in the circuit with every change of state of output. Consequently
there is power dissipation, called dynamic power dissipation. Thus in a CMOS circuit
power dissipation depends upon the frequency of operation and increase linearly if frequency
is increased. If f is the frequency of switching and CMOS gate is driving a load capacitance
C then the dynamic power dissipation is given as

PD = f.C.V2
DD ...(10.68)

where VDD is supply voltage.

Propagation Delay is mainly due to the high capacitance present at the input and
output. When CMOS gate is driving N loads, the input capacitances of all N gates appears
in parallel at the output of driver gate. Thus net output capacitance at drivers output is COUT
= C = CO + NCi where CO is capacitance of driver when looking back from output and Ci
is the input capacitance of load gates. Thus a large output capacitance is present whose
charging and discharging is slower and hence the lower speed of operation. One way to
improve it is to increase supply voltage, but this will increase the dynamic power dissipation
and hence the average dissipation.

Pullup and Pull down In the circuit shown in
Figure 10.63, we note that Y = HIGH when Q2 conducts
and Q1 open circuit. Hence Q2 can be regarded as
pullup transistor. When Y = LOW, Q1 conducts and
can be regarded as pulldown transistor. Thus the circuit
shown in Fig. 10.63 can be redrawn as fig. 10.66. Infact
Fig. 10.66 shows basic structure of any CMOS gate.
Usually NMOS are used to form pull down network
and PMOS are used to form pullup network. Connecting
the two networks in a fashion shown in Fig. 10.66 can
give variety of logic circuits. We use same methodology
to draw NAND gates and NOR gates using CMOS.

NAND and NOR GATE Basic CMOS NAND gate
and NOR gate circuits are shown in Figure 10.67 and
10.68. In both the cases Q1 and Q2 forms pull down
network and Q3 and Q4 forms pull down network.

In NAND gate Y = OV = LOW only when both Q1 and Q2 conducts i.e., when both A
= B = V(1). In all other cases of input either or both the Q1 and Q2 are open so Y = +VDD
= HIGH.

In NOR gate Y = +VDD = V(1) only when both Q3 and Q4 conduct and both Q1 and Q2
are open i.e., at A = B = V(0) = OV. In all other cases either or both the Q1 and Q2 conducts
so Y = OV = V(0) = LOW.

Fig. 10.66 Structure of
CMOS Inverter.

Switching Elements and Implementation of Logic Gates 443

Fig. 10.67 CMOS NAND Gate. Fig. 10.68 CMOS NOR Gate.

Example 10.10. A CMOS inverter is driving an identical inverter at a supply of 5 V with
the input feeded with square wave of 1MHz. If the input and output capacitances are 40 fF
and 20 fF respectively then find out the dynamic power dissipation in the gate ?

Solution. We’ve Ci = 40fF and CO = 20 fF1 then at the output of Driver C = Ci + CO
= 40 fF + 20 fF = 60 fF

Thus driver is said to be driving a capacitance of 60 fF. By equation 10.68 the dynamic
power dissipation.

PD = fCV2
DD = 1 × 106 × 60 × 10–15 × (5)2

PD = 1.5µW, a considerably low dissipation.

but if frequently is increased to 100 MHz, PD = 150 µW. Hence average power dissipation
increases with frequency of operation.

10.3.8.3 CMOS Series
Popular CMOS ICs come from 40XX, 54CXX, and 74CXX series. The 40XX series refers

to original CMOS design but they lack compatibility with TTL, which is badly needed in
practice. The 54C series is used for military purpose and 74C series is used for general
purpose electronics. Letter C is used to discriminate the two series from 74XX and 54XX
series of TTL. Advantage of 54CXX/74CXX is their pin to pin, function to function compatibility
with TTL. For example 7404 is a TTL inverter and 74CO4 is a CMOS hex inverter. Both the
ICs have inputs, outputs and supply at same pin number. Also a 54CXX series device can
replace a 74CXX device, but it is rarely done due to higher cost of 54CXX devices. Table 10.8
summaries the different CMOS series and their compatibility with TTL.

Table 10.8 : Different CMOS series

CMOS Series Series Prefix Example Compatibility With TTL
Standard CMOS series 40XX 4000 No compatibility

4009
Compatible CMOS series 74CXX 74C00 Pin to Pin and Function

74C04 to function

444 Switching Theory

CMOS Series Series Prefix Example Compatibility With TTL

High speed Compatible 74HCXX 74HC00 Pin to Pin and Function

CMOS series 74HC04 to function

High speed electrically 74HCTXX 74HCT04 Pin to Pin
compatible CMOS series Function to Function

Electrically compatible

Note that 74HCTXX series is electrically compatible means the current and voltage
parameters are matched with TTL and at the same time pin to pin compatibility is available
with TTL ICs. Various parameters for 74CXXCMOS series are summarized in Fig. 10.69 and
Table 10.9, assuming supply voltage of 5 V.

Fig. 10.69. Input/output profile of 74CXX series with supply 5V.

Table 10.9 : Parameters of 74CXX series with supply 5V.

Parameters Values

tPHL 60 n sec

tPLH 45 n sec

Static Power 10 nW

Dissipation

10.3.9 Three State Logic (TSL)
In a logic circuit we have two output states LOW and HIGH. Logic circuits have been

designed in which output can assume another state called High impedance state or High. Z
in short. Logics with three states of output are called tristate logic (TSL) or three state logic.
When the output is in third state, the output is said to be disabled i.e., neither HIGH nor
LOW. In a microprocessor based system outputs of many logic devices has to be connected
to a common bus which in turns may be driving number of other logic devices. Such
connections cause a number of problem–

1. If the output is not in HIGH state it does not necessarily mean LOW state output.

2. Accidentally more than one logic device may drive the bus and can cause bus
contention, which may damage the bus.

3. Active pullup outputs cannot be directly connected, because it introduces very high
current spike. This causes overheating of IC and consequently IC may be damaged.

Switching Elements and Implementation of Logic Gates 445

4. Connecting open collector output through a common external resistor causes problem
of loading and speed.

To overcome such problems TSL are used, in which outputs are in High-Z, and they
deliver a HIGH or LOW to bus only when they are made to come out of 3rd state through
a control input.

The basic TSL circuit is a inverter called TSL inverter, and shown in Fig. 10.70. A close
inspection of circuit reveals that it is a TTL NAND gate with some modification. Readers
are advised to glance over the operation of TTL NAND gate.

Fig. 10.70 TSL Inverter

Table 10.10 : Truth Table of TSL Inverter
C A y

0 X HIGH-Z

1 A A

When C = V(0) = OV diode D and corresponding B-E junction of Q1 conducts. Recall
that if any of B-E junction of Q1 conducts, transistors Q2 and Q3 does not conduct and acts
as open circuit. When diode D is conducting, the diode drop VD = 0.7 V appears at the base
of Q5 which is not sufficient to turn ON both Q4 and Q5, thus they act as open circuit. The
result is very high impedance appeared at output. Thus the output is in High impedance or
3rd state.

When C = V(1) = +VCC The diode is open circuit and corresponding B-E junction of Q1
is open circuit. The result is that the circuit behaves as 2-input TTL NAND gate whose one
of the input is HIGH. Thus the gate acts as inverter.

The logic symbol of a TSL inverter and its truth table is shown in Figure 10.71 and
Table 10.10, respectively.

Another useful TSL circuit is three state buffer in which output is same as input. Such
buffers are commonly used to enhance the driving capability of a logic device. The logic
symbol and truth table of a three state buffer is shown in Fig. 10.72 and Table 10.11,
respectively.

Fig. 10.71 Logic symbol of TSL inverter

446 Switching Theory

Table 10.11 : Truth Table of three state Buffer

C A Y

O X HIGH-Z

1 A A

10.4 INTERFACING OF LOGIC GATES
In the last section we have discussed various forms of logic circuits, called logic families.

At present time TTL and CMOS are the only used families. In a system many a times it is
needed to interface. CMOS and TTL gates. By interfacing we mean the method of connecting
the output of driver to input of load gate such that their exist a compatibility. In nutshell
by interfacing we have to match electrical parameters of two gates, so that logic STATE
produced by driver can be correctly recognized by load gate. For interfacing following equations
must be satisfied.

VOH DRIVERb g > VIH LOADb g ...(10.69)

VOL DRIVERb g < VIL LOADb g ...(10.70)

− IOH DRIVERb g > N. IIH LOADb g ...(10.71)

IOL DRIVERb g > −N. IIL LOADb g ...(10.72)

Note that negative sign in current equations means the direction of current opposite to
the one assumed in Fig. 10.30.

10.4.1 TTL to CMOS Interface
As stated earlier, our strategy is to match electrical parameters, such that equations

(10.69) through (10.74) are satisfied. For this purpose we reproduce the output profile of TTL
and input profile of CMOS in Fig. 10.73, assuming that CMOS is also operating at +VDD = 5V.

Fig. 10.73 (a) TTL output Profile (b) CMOS Input Profile

From the figure it is clear that HIGH state output of TTL may not be treated as HIGH
input always. Because VOH of TTL is lower than VIH of CMOS, so equation (10.69) is not
satisfied. As shown by figure equation 10.70 is well satisfied and equations (10.71) and (10.72)
can be satisfied for reasonable value of N. Thus overall connection problem is to raise VOH
of TTL above 3.5 V. For this purpose a simple method is to use external pullup resistor of
3.3 KΩ, as shown in Fig. 10.74. The pullup resistor raise the HIGH state voltage to about

Fig. 10.72 Logic symbol of three
state Buffer

Switching Elements and Implementation of Logic Gates 447

+5V and has no effect on LOW state output. When
output is in HIGH state, the output capacitance is
charged 2.4 V through pullup transistor. As soon as
pullup transistor stops conduction external pullup
resistor R charges the output capacitance to 5 V. The
value 3.3 KΩ is suited in most application and is a
compromise between speed and power dissipation.
Clearly TTL will sink current through R when output
is LOW, thus

Isink =
5 V

3.3 K
mA= 1 515.

The minimum value of R is determined by maximum amount of sink current i.e.,

Rmin =
5 5

16
312 5V

I mAOL
= = . Ω

Nearest standard value is 330 Ω. Thus Rmin = 330 Ω can do the job: This is used in
very high speed requirements, but it increases power dissipation.

10.4.2 CMOS to TTL Interface
To illustrate this we consider CMOS driving a low power TTL gate of 74LXX. The

respective profiles are reproduced in Fig. 10.75 from Table 10.7 and Fig. 10.69.

Fig. 10.75 (a) Output profile of CMOS (b) Input profile of 74LXX TTL

It is evident from Figure 10.75 that equations
(10.69), (10.70) and (10.71) are well satisfied but
equation 10.72 is satisfied for N = 2 only. Thus CMOS
output can be connected directly to the input of 74LXX
but CMOS can drive only 2 such gates. This is shown
in Figure 10.76.

If we see the datas for 74LSXX in Table 10.7 we
find that IIL = –360µA which just matches the IOL of
CMOS. Thus CMOS output can be connected directly to
only one 74LSXX TTL gate.

Fig. 10.74 TTL Driving CMOS

Fig. 10.76 CMOS Driving
74LXX TTL, FAN OUT = 2

448 Switching Theory

If we see datas for 74XX in table 10.7 we find that IIL = –1.6 mA too much current for
CMOS to sink. Thus the output of CMOS can not be connected directly to standard TTL. To
overcome this problem CMOS buffers are used, as shown in Figure 10.77. One such IC is
74C902 which is a hex buffer. Each of these buffers have

IOL = 3.6 mA and IOH = 800 µA

Fig. 10.77 CMOS driving standard TTL

Thus if only one buffer of 74C902 is used then with IIL = –1.6 mA of standard TTL and
IOL = 3.6 mA, we can obtain a FANOUT of 2 gates. Use of remaining five buffers can
increase the FANOUT further.

10.5 COMPARISON OF LOGIC FAMILIES
A comparison of logic families is presented in table 10.12.

Table 10.12 Comparison of logic Gates

Parameter RTL DTL TTL ECL CMOS

Standard High Low Schottky Low
Power Power Power

74XX 74HXX 74LXX 74SXX schottky

74LSXX

Noise Average good very very very very very average very good
immunity good good good good good

Power Di- 12 8-12 10 22 1 19 2 40-55 0.01 static
ssipation Per 1 mW at
gate (mW) 1 MHz

Propagation 14 30 10 6 33 3 10 2 70
Delay Per
gate (n sec)

Figure of 168 300 100 132 33 57 20 95 0.7
Merit (PJ)

FANOUT 5 8 10 10 20 10 20 25 Above 50
Clocking 8 72 35 50 3 125 45 Above 10
Rate (MHz) 60

10.6 EXERCISES
1. Define the term ‘Digital Circuits’ and ‘Logic Family’.
2. Why semiconductor devices are used in digital circuits instead of relays?
3. What is meant by integrated circuit (IC) and ‘chip’?
4. (a) What is meant by intrinsic and extrinsic semiconductors?

(b) What type of impurities must be added to a pure semiconductor to obtain a
p-type and n-type semiconductor?

Switching Elements and Implementation of Logic Gates 449

5. Calculate the intrinsic carrier concentration in a standard silicon crystal at t =
40°C.

6. Define the diffusion current and drift current.

7. Calculate the drift velocity of electrons and holes if mobility of electrons and holes
are 1350 cm2/V-sec and 450 cm2/V-sec respectively. Assume applied electric field is
1 V/cm.

8. Explain how depletion region width is decreases when a PN junction diode is
forward biased.

9. What is thermal voltage VT. Calculate its value at room temperature?

10. Define the term storage time and transition time for PN junction diode.

11. How schottky diode improves the speed of operation?

12. Why npn transistors are preferred over pnp?

13. Briefly explain how an emitter resistance can result in active mode operation of
a transistor.

14. Explain the switching characteristics of a BJT with the help of diagrams.

15. Why switching speed of a BJT is limited. How a schottky transistor can improve
it?

16. Explain the principle of operation of MOS devices.

17. Why MOS devices are called unipolar?

18. Define the threshold voltage of a MOS device.

19. Draw and explain IDVs VDS curve of MOS devices.

20. Why packing density of NMOS is higher than PMOS?

21. What is CMOS. Why its use in digital circuit is advantageous?

22. Why switch ON to switch OFF time of a BJT switch is larger?

23. Define the terms MSI, VLSI and ULSI.

24. Classify the logic families on the basis of polarity of charge carriers used for
current conduction.

25. Define the delays tPHL and tPLH.

26. (a) What is meant by figure of merit of a logic gate?

(b) For a gate value of figure of merit should be high or low. Why?

27. Explain the AC noise margin and DC noise margin. How it helps the designer.

28. Define FAN IN and FAN OUT of a logic gate.

29. What is meant by Passive pullup and Active pullup. Why they are called so?

30. What is meant by pull down?

31. What is meant by open collector output and open emitter output ? Where they are used?

32. What is the output logic performed by a RTL gates, when their output is wired?

33. Calculate the FAN OUT and NOISE Margin of RTL gates.

34. Why propagation delay of a RTL gate increases when number of load gates are
increased?

450 Switching Theory

35. What is current hogging in DCTL?

36. Why switching speed of HTL gate is severely affected?

37. Why average power dissipation increases when wired logic is performed?

38. What are the reasons behind limited switching speed of DTL gates ? How it can
be improved?

39. What is the purpose of transistor Q1 in modified DTL gate shown in Figure 10.45?

40. Why the speed of operation of passive pullup TTL is limited?

41. (a) What happens if an input of TTL is left floating?

(b) What will be the output of TTL gates shown below?

42. Calculate the FAN OUT of DTL NAND gate of figure 10.40 if transistor has

(i) hFE = 20

(ii) hFE = 40

43. When outputs of gates are wired, explain

(a) How the speed of operation is improved?

(b) Why the FAN OUT is reduced?

44. How FAN OUT of TTL in wired logic can be improved?

45. (a) Explain the operation of pullup transistor and phase splitter in active pullup
TTL.

(b) What is the purpose of using diode in output circuit of active pullup TTL.
Comment an its PIV rating?

46. Why wired logic is not recommended for TTL with active pull up?

47. With the help of datas given in Table 10.7, calculate the FAN OUT and figure of
merit of 7400, 74S00 and 74LS00.

48. Why schottky TTL is faster than standard TTL?

49. Which is the fastest logic family ? Why?

50. Why propagation delay is lower in ECL?

51. Why FAN OUT of ECL is higher?

52. What are the advantages of using difference amplifier in ECL?

53. Explain the wired logic performed by ECL gates.

54. Why transistors of high β and high cut in voltages are used in ECL?

55. Realize the boalean function y = (A + B) + (C + D) + (A + B) (C + D) by using
minimum number of 2 input ECL gates only and 2 input TTL gates only. Comment
on the result.

56. In MOS logic why a MOS transitor is used as load instead of a resistor?

57. Why depletion mode load is preferred over enhancement mode load in MOS logic?

Switching Elements and Implementation of Logic Gates 451

58. Draw the circuit diagram of NMOS NOR gate and explain its operation. Also draw
the truth table in which voltage levels corresponding to logic states are shown.

59. Why power dissipation in an NMOS NAND gate is lower than that of NMOS NOR
gate?

60. With the help of circuit diagram explain CMOS inverter?

61. What is meant by static and dynamic power dissipation?

62. Draw and explain transfer characteristics of CMOS inverters.

63. Why average power dissipation of a CMOS gate increases with frequency of
operation?

64. What is three state logic ? Draw the circuit diagram of three state NAND gate an
explain its operation?

65. Why three state logics are needed in complex digital system?

66. What are the requirements of interfacing two logic gates?

67. With the help of data sheet obtain interfacing of CMOS to 74LSXX TTL?

68. Compare CMOS and TTL.

452 Switching Theory

11
CHAPTER

11.0 INTRODUCTION
Memories are most essential part of computer and microprocessor systems. They are

used to store data and programs for the computer systems. In many general-purpose applications
they are also used to store the needed control information for the applications. There are
various types of memory devices to accommodate various needs of data storage.

To be used with computer systems mainly we have two types of memories, semiconductor
and magnetic memory. The semiconductor devices are fast storage devices and are connected
directly to the CPU. For this reason they are many a times called main memory or primary
memory. Since their storage capacity is relatively small they are generally used for temporary
storage. Some of them are also used for permanent storage, as we will see later. The
magnetic memories are used for very large data storage for long time, and are called mass
storage devices. Since they are not connected directly to the CPU they are generally called
secondary memory.

In the computer systems very first memory elements were magnetic and were referred
as core memory. These were very bulky and needed large PCBs. In contrast semiconductor
memory is compact and fast. With the latest advances in VLSI, they high-density reliable
semiconductor memory devices are available at cheaper costs. Such devices internally use
BJTs and MOS devices. Both read/write and read only memories are available with
semiconductor technology and influenced the computational world greatly.

The advent of programmable read only memories (PROMs) made programmable logic
devices (PLDs) to appear. A read only memory (ROM) consist of an array of AND and OR gates
which are fixed. A PROM is one in which these arrays can be programmed but only once. The
re-programmable PROMs are also available which greatly enhanced the utilization of these
memory devices. The flexibility of programming the AND-OR array provided many complex
systems to appear. Programmable logic array (PLA) and complex PLDs (CPLDs) are among
them. Consequently this made possible the appearance of field programmable graphic array
(FPGAs) and application specific integrated circuits (ASICs).

PLDs, CPLDs, PROMs, FPGAs etc have been presented earlier. In this chapter we will
study the semiconductor memory devices extensively.

11.1 MEMORY BASICS
The ability to remember is the most important characteristics of digital circuits. The

circuits or systems designed to facilitate storage of digital information are called memory.

452

MEMORY FUNDAMENTALS

Memory Fundamentals 453

In its simplest form a F/F is a basic memory device that can be used to store 1-bit of
information. Any type of memory can be supposed to be composed of a no of F/F. The general
information that is stored in the memory is called as Data. The F/F or circuit arrangement
that holds a 1-bit information is conveniently called a storage cell or simply memory cell. The
total number of bits (or storage cells) that a memory device can store is referred to as its
storage capacity. e.g. a device that can store 1024 bits is said to have a storage capacity of
1024 bits. In memory data is always stored as a group of bits. In fact a single memory cell
is rarely accessed, instead they are accessed in a group of fixed size. The number of bits in
a group (of data) is called as the Word Length and each group is called as Word. e.g. In a
memory if there are 10 datas each of which are a group of 4-bits, then memory is said to have
ability to store 10 words of word length 4-bits. What about storage capacity of this memory
device? It is simply 10 words × 4-bits (word length) = 40-bits. So,

Storage Capacity (in bits) = No. of Words × Word Length ...(1)

The eq. 1 is the basic relation to determine storage capacity of a memory device.
Although word length can be any no of bits (even 1-bit), now a days all have settled down to
the basic memory word length as byte.

In a memory device there are several storage cells collected together to form a memory
of larger capacity. In order to access them unambiguously each of the storage cell (or group
of cell) is associated with a unique name, called address of the cell. So each cell may be called
an address location or memory location, a place where data resides. In an analogy let us
consider a residential colony where each house is a memory cell, people living in it are data
stored, and house numbers are address of memory cells.

Any memory device may permit two types of operations to be performed on it, the read
and the write. A Read operation, also called sensing, means detecting the status (i.e. information)
of memory cell (weather it is 1 or 0) and the write operation means setting the status of
memory cell either to 0 or to 1 according to the given data.

11.2 MEMORY CHARACTERISTICS
All kind of memory devices (i.e. semiconductor, magnetic, and optical memory), used to

build the memory system have some functional characteristics in common. One or more of
these characteristics may be used to describe the performance of the memory devices. Following
are the important functional characteristics that must be considered for any description of
memory

• Storage Capacity. It is defined as the total number of bits (or words) that a
memory device can store. In general storage capacity is specified in Kilobytes (KB),
Megabytes (MB), or Gigabytes (GB). Kilobit is represented as Kb. In binary the kilo
means 1024 (not 103) and Mega means 1024 K (not 1011). If storage capacity of
device is 1KB it means it has 1024 storage locations and at each location a word
of length 1 byte (i.e. 8-bits) can be stored. So the total capacity in bits would be
1024 × 8=8192 bits or 8 Kb.

• Cost. The cost of the memory can be defined as the cost per bit. It is expected that
the cost/bit should be as low as possible. If S is the storage capacity, C is the total
cost of memory then the cost per bit Cp/b can be defined as

Cp/b = [total cost (C)/Storage capacity (S)]

454 Switching Theory

• Memory Access Time. The performance of a memory device is primarily determined
by the rate at which the information can be read or write into the memory.

The average time required to read a fixed amount of information from the selected
memory location is termed as Read Access Time or Access Time and is denoted as
‘tA’. In precise words, it is average time delay after memory address is issued till
the data appears at output. The access time should be kept as low as possible.
Similarly the average time required to store a fixed amount of information at the
selected memory location is termed as Write Access Time.

Read Access Time > Write Access Time

The average rate at which memory can be accessed is defined as the Access Rate
‘bA’ of a memory and is measured in words/sec.

Access Rate (bA) = 1/tA

• Memory Accessing Modes. It is defined as the way or sequence in which the
information is accessed in the memory. The two types of access modes are

• Random Access Mode

• Serial Access Mode

If the memory cells can be accessed in any order, then the access time is independent
of the position of cell. This type of access mode is referred as random access mode,
and the memories having such access mode are called Random Access Memory. In
such memories any storage cell (or location) can be reached in a fixed amount of
time and each storage cell can be accessed independently of the positions of other
cells. Obviously this type of memories are faster. Semiconductor memories are of
this type.

If the memory cells can be accessed one after another or only in certain
predetermined sequences, the access time is dependent of position of cell. Thus the
access time will be different for different cell locations. This is called serial access
mode and the memories having such access mode are called Serial Access Memory.
Magnetic memories are of this type.

• Memory Cycle Time and Bandwidth. The minimum time that must elapse
between the initiation of two consecutive memory accesses is defined as the Memory
Cycle Time tC. The cycle time tC can be greater than the access time tA. This is
because after completion of one memory access some memory devices need a small
amount of time, tDELAY to make them ready for next access. In general

tC = tA + tDELAY (tDELAY is additional delay due to the physical characteristics of
memory)

Note that tDELAY may not be present in all type of memories.

Maximum amount of information that can be transferred to or from memory every
second is referred to as the maximum Data Transfer Rate in words/sec or the
Bandwidth ‘bC’, defined as

 Bandwidth (bC) = 1/tC

• Non Destructive Read Out (NDRO). It is required that the read process should
create a copy (i.e. sense) of the data stored and must not disturb the data. Such a
reading is called Non Destructive Read Out (NDRO) and is expected from all kind
of memory.

Memory Fundamentals 455

In some memories the reading may destroy the data stored at a location. Such a
reading is called Destructive Read Out (DRO). In such cases the read operation
must be followed by a write operation to restore the original state of memory.
Obviously such memories would be slower ones.

• Permanence of Storage. It is concerned with how long a stored information can
be retained when

(a) Power is Switched off If the stored information does not vanish with power off,
the memory is referred as NON VOLATILE memory. But if the stored information
vanishes completely at power off the memory is called as VOLATILE memory.

(b) Power is NOT Switched off. If the data can be retained indefinitely the memory
is called as STATIC memory. If it can be retained for some definite small
amount of time, the memory is called as DYNAMIC memory. In the later case
the data must be rewritten periodically, this is called refreshing.

• Alterability. Alterability is concerned to the capability of memory devices with
which the stored data can be changed or updated when they are in use (i.e. online).
Memories, which can be altered online, are referred as Read-Write Memories.
Memories, which can not be altered online (if at all they can be altered offline) are
called erasable read only memory devices. However some memory devices can not
be altered even when they are off line and are called nonerasable read only memory
devices.

11.3 MASS STORAGE DEVICES
The devices used to store high volumes of data are referred as mass storage devices. The

magnetic memories and Optical memories (CD-ROMs) are such memory devices. The magnetic
memories are used for very large data storage for long time, but due to their lower speed
they are not connected directly to the CPU. Due to this they are generally called secondary
memory or backup storage device. Optical memories (CD-ROMs) are another type of mass
storage device. The optical disks are popular due to large storage capacity, transportability
and reliability.

11.3.1 Magnetic Memory
In magnetic memory devices some sort of magnetic coating (usually ferric oxide) runs

throughout the base. On this coating direction of magnetic flux or direction of magnetization
can be used to store 1 or 0. These devices are called Serial Access Memory (SAM) devices,
because we can not reach the data directly and to reach a data stored we must go one after
another. For example consider an audio tape and if you want to reach song number 3 you
must traverse through song numbers 0, 1 and 2.

Tracks

Fig. 11.1 Organization of tracks

456 Switching Theory

Hard disks and floppy disk are common type of magnetic memories used in computers.
The storage media of magnetic disks are made up of aluminum or plastic base with a thin
coating magnetic on its surface where the datas are actually stored.

 In a Floppy Disk, as shown in Fig. 11.1, the whole media is divided into a number of
concentric circles, called track. Each track is further divided into a number of sectors. In
these sectors bytes of data block are stored. To reach to a stored data first a particularly track
is selected, and then particular sector is reached on this track, ofcourse starting from the very
first sector on this track. To reach to required sector an external rotating mechanism is
employed, thus time delay to reach particular sector is called rotational delay or latency time.
The time delay to select a particular track is called Seek time. Now a day the 3.5-inch floppy
disk of storage capacity 1.44-MB is popular. It contains a total of 40 tracks where innermost
track is numbered as Track ‘0’ and outermost track is numbered Track ‘39’. For each of the
data access search starts from 1st sector of Track ‘0’. The main advantage of using floppy disk
is portability, but its use is restricted by its small storage capacity.

Fig. 11.2 Structure of HARD DISKS

A Hard Disk can be supposed to have collection of such circular disk surfaces kept in
a cylinder on a common shaft, called spindle for rotation. A simple organization of hard disk
storage unit is shown in Fig. 11.2. The spindle rotates the disk the disk surfaces at higher
speeds, making data access faster than the floppy disks. On each disk surface there are
several hundreds of tracks arranged in concentric circle as shown in Fig. 11.1. Each of the
tracks is further divided into a number of sectors where data actually resides. Each of the
disk surfaces is provided with the separate Read/Write head that may be connected to form
a Read/write arm.

During the access operations the disks are rotated continuously by the spindle, at a
constant speed. The Read/Write arm the moves in a fixed linear path to select a particular
set of tracks and the sectors on these tracks. The disk monitoring system determines which
disk surface has to be accessed to find the target data. In comparison with floppy disks the
construction of hard disks are much more robust and reliable but they are not portable.

Memory Fundamentals 457

In both the magnetic disks the digital information can be stored on disk surface by
applying a current pulse to magnetization coil present in Read/Write head. This causes a
change in magnetization in the area under the read/write head. The direction of magnetization
will be parallel to the direction of applied field. To read the magnetically stored information
on the disk the Read/Write head has to sense the state of magnetization resulting from the
area under the head. Movement of magnetic disk causes change in magnetic field, which
induces a voltage in the coil of head. The polarity of induced voltage is monitored to obtain
the Magnetization State, which in turns gives the stored binary bit.

The principal disadvantage of magnetic disk memory is relatively slower slow speed that
is attributed to slow rotational mechanism, seek and latency time and the fact that data
transfer through such devices are serial. Also presence of mechanically moving parts makes
magnetic memory unreliable.

But their advantage lies in two great facts that it offers very large-scale data storage for
long time at very low cost per bit. There are other kind of magnetic memory devices also,
namely ferrite core memory, magnetic tape memory, magnetic bubble memories etc.

11.3.2 Optical Memory
Optical memories usually takes the form of optical disks which resembles magnetic disks

in that they store binary information in concentric tracks on a mechanically rotated disks.
The read & write operations are done with the help of Lasers, capable of producing a light
spot of the order of 1 micron.

Optical discs are available in many formats: CD-ROM (compact disk-read only memory),
CD-R (compact disk-recordable), and CD-RW (compact disk-rewritable). Newer high capacity
version of optical disks is DVDs, the Digital Versatile Disk. Similar to the CDs, the DVDs also
have different formats as DVD-ROM, DVD-R, and DVD-RW. Most of the CDs can store upto
650 MB where as the simple single layered DVD can store 4.7 GB of data.

The CD-ROM is manufactured using carefully prepared glass master. The master is
pressed into injection molded polycarbonate plastic forming the CD-ROM. The resulting CD-
ROM contains several small pits and lands (no pits) on the various tracks that can be
processed optically. When a computer system want to read the disk, a Laser beam is aimed
on the disk from the bottom and the reflection from the pits & lands are interpreted by the
photo detector as logic 0s and 1s.

For the purpose of permanent storage (archival storage) the CD-Rs are very popular, and
many a times known as WORM (write once read many) storage devices. The information can
be recorded on CD-R (commonly known as CD burning) by using CD-writers. During the
burning process a laser heats gold reflective layer, and a dye layer in the CD-R causing it to
have a dull appearance. When read by the CD-R drive the dark burnt areas (like pits) reflect
less light. The CD-R reader interprets the shiny areas (lands) and the dull areas (burned) as
logic 0s & 1s.

The CD-ROM and DVD-ROM both are manufactured by using the same technology and
read data from a spiral track of pits and lands. However the DVD-ROM has a greater storage
capacity. It is because the pits and lands on the DVD-ROM are much smaller and more closely
packed, thus allowing more information per track. The tracks also are closely spaced allowing
more tracks per disk. The DVD-ROMs can store 4.7 GB (single sided layer), 9.4 GB (double
sided layer), or 17 GB (double sided double layered), where as the CD-ROMs can store only
upto 650 MB.

458 Switching Theory

The CDs are associated with all kind archival storage and have no special standards
dictated for the storage of specific type of data on the media. However the DVDs are most
commonly associated with the video productions. DVD-video standards are used when disk
holds only audio/video (such as movies). The DVD-ROM standards are used when the DVDs
are used for data storage as with a computer system.

The data transfer rate of a CD-ROM drive is indicated as 1x, 2x, 4x, 16x, 32x etc. A CD-
ROM drive with a designation of 1x would have a max data transfer rate of 150 Kbytes/sec.
Therefore a 4x drive would have a data transfer speed of 150 Kbytes/sec × 4= 1100 Kbytes/
sec. These data transfer rates are theoretical and the actual data transfer rates are usually
lesser. The DVD-ROMs can provide data transfer rates of 1.38 Mbytes/sec, which is
approximately same as the speed of 9x CD-ROM.

The advantages of Optical disks are huge amount of data storage, low cost, easily
transferable, a few mechanical parts results in reliability, and high speed. The main disadvantage
could be the complexity of Read/Write head.

Although lot more pages can be shed to explain the architecture and characteristics of
magnetic & optical memories, but a detailed discussion is beyond the scope of this text.
However interested readers can refer to “Hayes, J.P.: Computer Architecture”. A glance over
magnetic & optical memory was presented to maintain the completeness of the topic. The
semiconductor memory is the main consideration of this text so until & unless specified
memory must be read as semiconductor memory throughout this text.

11.4 SEMICONDUCTOR MEMORY
Numerous developments in semiconductor technology has emerged into large numbers of

LSI and MSI memory devices, called memory chips. Besides being faster and compatible with
CPU they are economical also. A semiconductor memory is organized as a rectangular array
(preferably square array) of storage cells that are integrated on a silicon wafer and are available
in DIP packages. Due to this organization any memory cell can be accessed randomly, thus all
the semiconductor memories are called Random Access Memory (RAM). The basic memory cell
may be a flip-flop, or a charge storing element like capacitor that is said to hold logic 1 when
charged and logic 0 when discharged. The type of transistors e.g. bipolar, or MOS, or CMOS,
used to form a memory cell dictates the storage capacity and speed of a memory chip.

11.4.1 Basic Memory Unit
A simple block diagram of a memory unit can be drawn as shown in Fig. 11.3. It contains

data bus, address bus and control signals. A bus is a group of parallel conductors whose job
is to carry binary information. Each of the conductors carries 1-bit information. The number
of bits that a memory data bus carries simultaneously is called memory bus width. Usually,
but not necessarily, the memory word length and memory bus widths are same.

Fig. 11.3 Block Diagram of Memory Unit

Memory Fundamentals 459

The m-bit data bus is used to transfer data to and from the memory. The n-bit address
bus carries the address of memory locations. An n-bit address bus can access upto 2n storage
cells i.e. storage capacity is 2n bits as each cell can store 1-bit. The Read (RD) & Write (WR)
signals specify the operation to be performed. As shown the two signals are active low i.e.
they are activated when logic ‘0’. At any time either of the two signals can be activated. In
some memory chips read & write controls are available at one signal line. Chip select signal
(CS) (sometimes labeled as enable EN also) is used to enable/disable the chip in multiple
memory system. It is also a logic low signal. There may be multiple enable signals in a single
chip that must be activated simultaneously to enable the chip.

11.4.2 Basic Memory Organization
Basic organization of semiconductor memory is shown in Fig. 11.4 (a). It consists of a

storage cell array, Read/Write control circuit along with control signals, an address decoder
feeded by a register called memory address register, and a buffer register through which data
transfer is carried out. In a semiconductor memory storage cells are organized as a rectangular
array. The address bus is connected to internal address decoder through the address register.
The RD and WR control line specifies the type of access: If RD = 0 and WR = 1 then read
operation.

Fig. 11.4 (a) Basic Memory Organization

If RD = 1 and WR = 0 then write operation. To access memory, address of the required
cell is issued to the memory address register through the address bus. The address decoder
selects the particular location in memory array. If read operation is requested then the
content of selected location is copied to the memory buffer register which transfer it to the
data bus. If write operation is requested then content of data bus is brought to buffer register
and then transferred to the selected memory location. Memory buffer register contains bilateral
three state buffers, one for each bit of data bus. By combining two three state buffers a

460 Switching Theory

1-bit bi-directional input output line is formed. This is shown in Fig. 11.4 (b). The enable or
disable signals for the bilateral buffers can be generated through the realization shown in Fig.
11.4 (c). These signals are given to all the bilateral buffers of buffer register. Note that if both
RD & WR are activated, or CS inactivated, arrangement in Fig. 11.4 (c) will generate disable
signals for both the buffers i.e. both TSL1 & TSL2 are disabled and data bus enters into high
impedance state.

Fig. 11.4 (b) Bilateral Memory Bus Buffer Fig. 11.4 (c) Generation of Enable/Disable Signals
 for Buffers

11.4.3 Cell Organization (Memory Addressing)
Memory addressing is concerned with the selection of one particular memory cell from

storage cell array. To facilitate selection, the memory cells are organized as rectangular array
of m-rows and n-columns as shown in Fig. 11.5(a).

Fig. 11.5 (a) An Array of 4×4 Cells Fig. 11.5 (b) An Array of m × n Cells

Fig. 11.5(a) shows simplified diagram of memory cells array that have 4-rows and 4-
columns, thus containing a total of 16 memory cells. The control circuitry associated with
memory allows only one row and one column to be activated at a time. In order to select a
particular cell we need to specify the appropriate row and column number. Let us consider
the selection of 10th cell. It requires column C2 and row R2 to be activated and the cell at
the intersection of C2 and R2 is selected which is 10th cell. Dashed lines in Fig. 11.5 (a) show
this. So the 10th cell can be designated as the cell C2, R2 (or 2, 2 or 22). This designation
is defined as the address of the 10th cell. Collectively the lines corresponding to rows and
columns are called address lines. In a memory array each cell will have a similar type of
unique address. Hence any cell can be accessed, just by specifying the row and column
number (or address) associated with it. Since any cell can be accessed randomly, it is named
Random Access Memory. Fig. 11.5 (b) shows a simple block representation of a rectangular

Memory Fundamentals 461

array that we will use in following subsections to understand some important facts. If in Fig.
11.5 (b) m = 4 and n = 4 then it represents the array shown in Fig. 11.5 (a).

11.4.3.1 Matrix Addressing
We know that to facilitate selection, the memory cells are organized as rectangular

array of m-rows and n-columns. When rows and columns are made equal i.e. m = n, then the
array becomes a Square Array of capacity n × n = n2. This type of arrangement is called
MATRIX Addressing. This addressing have the advantage of requiring fewer number of address
lines than the number of address lines required by any other rectangular arrangement. This
fact is explained below by using an array of 111-cells (the one shown in Fig. 11.5 (a). Observe
carefully the different array arrangements shown in Fig. 11.6.

Fig. 11.6 Different Array Arrangements for 16 memory cells.

Fig. 11.6 (a) and 11.6 (b) are equivalent array arrangement as one refers to 8-rows and
2-columns and other refers to 2-rows and 8-columns. Both require 10 address lines (8-rows+2-
columns) to select any of the memory cells. Similarly Fig. 11.6 (c) and 11.6 (d) are equivalent
array arrangement and require 17 address lines. Infact 111 lines will suffice, as there is only
one column/row. Fig. 11.6 (e) is square array arrangement with equal number of rows and
columns and require 8 address lines. So in order to reduce the number of address lines square
array arrangement is best.

The arrangement in Fig. 11.6 (e) is referred as Matrix addressing as defined earlier. In
contrast the 16 ×1 array arrangement as in Fig. 11.6 (c) is called Linear Addressing. It is because
there is only one column and to select any of the cells, one needs to specify the row only.

11.4.3.2 The Address Decoding
The address decoding is concerned with the activation of particular row and column to

select a memory cell. Here our concern is to see this process exclusively for matrix addressing.
Let us reconsider the Fig. 11.6 (e) that requires 4-rows and 4-columns. If we use two 2 to 4
line decoders then the address line requirements will be reduced further, as shown in Fig.
11.7 (a). The decoders will activate only one of the row & column lines out of 4 lines. As

(a)
(c)

(b) (d)

(e)

462 Switching Theory

evident from figure now the total number of required address lines are 4 only! The activation
of a particular row and column line depends upon the row address and column address. Any
column from C0 to C3 can be activated by specifying it as a 2-bit binary number (00 to 11)
at column address lines. Similarly specifying a 2-bit binary number at row address lines can
activate any of the four rows. Thus a total of 4-bit address can access any memory cell
unambiguously. Since 4-bit address representation allows 24 = 16 unique addresses, we can
say that an n-bit address can be used to define a square array of 2n memory cells.

Fig. 11.7 (a) Square Array of 16 cells with Row and column Address Decoders

Fig. 11.7 (b) Square Array of 2n cells with Row and Column Address Decoders

Fig. 11.7 (b) shows a generalized arrangement of square array with address decoders. The
array is organized as n/2 column address lines and n/2 row address lines thus making a total
of n-bit address lines. It should be noticed that in such arrangements the value of n should
an even integer (2, 4, 6, 8 ...). Since at the output of each of the decoder we have 2n/2 lines,
the number of cells (or capacity) in this array would be 2n/2 × 2n/2 = 2n. This is exactly the
reason why commercially available memories have capacity equal to some integer power of
2 i.e. 210=1024, 212 = 4096 etc. The above discussion concludes that if n is the number of
address lines then

Memory Fundamentals 463

Number of storage cells = 2n

In general

2n > Number of Storage Locations

Or ...(2)

2n > Number of Words

Where n = No. of address lines (An Integer)

Example. In the Fig. 11.8(a) explain how memory cell C2, R2 can be accessed? Given that
the row & column numbers are in true order and activated output line have status logic high.

A 3 A 2

Co lumn Address

2 to 4 Line Decoder
“Decoder-Y ”

C 0 C 1 C 2 C 3

Ce ll
0 -0
X Y

Ce ll
0 -1
X Y

Ce ll
0 -2
X Y

Ce ll
0 -3
X Y

R 0

Ce ll
1 -0
X Y

Ce ll
1 -1
X Y

Ce ll
1 -2
X Y

Ce ll
1 -3
X Y

R 1

Ce ll
2 -0
X Y

Ce ll
2 -1
X Y

Ce ll
2 -2
X Y

Ce ll
2 -3
X Y

R 2

Ce ll
3 -0
X Y

Ce ll
3 -1
X Y

Ce ll
3 -2
X Y

Ce ll
3 -3
X Y

R 3

Read/W rite
Control C ircu it

Read

W rite

CS

D /Din o u t

Ce ll se lected a t x = y = 1

2 to 4
Line

Decoder
“Decoder

-X ”

A1

A0

Row
Address

Fig. 11.8 (a) 4×4 Array Organized as 16 × 1 memory

464 Switching Theory

Solution. Figure shows an array of 4×4 having storage capacity of 16-bits. Issuing its
address can access the required cell. Since row & column numbers are in true order, the
binary equivalent of these numbers will give required memory address.

Memory cell to be accessed C2, R2

Column C2 specified in binary = 10 = A3 A2

Row R2 specified in binary = 10 = A1 A0

So the complete address A3 A2 A1 A0 = 1010

Upon receiving the address the address decoders ‘X’ and ‘Y’ will activate row R2 and
column C2, respectively. All other rows and columns will be deactivated at this time i.e. R3
= R1 = R0 = 0 and C3 = C1 = C0 = 0. Now referring to Fig. 11.8(a) we can see that only the
cell 2-2 has got both x and y input high which is present at the intersection of R2 and C2.
Thus the cell C2, R2 is selected for access.

11.4.4 Organizing Word Lengths (Different Memory Organization)
So far we have discussed the memories that can access a single storage cell or 1-bit at

a time. In computer systems requirement is to access a group of bits at a time. In this section
our prime concern is to discuss the organization that can access a group of bits. More over
this section also deals with different types of cell selection mechanism that can be used
conveniently.

To begin with let us consider a 4 × 4-memory array organized as 16 × 1 memory i.e. 16
words each of length 1-bit, as shown in Fig. 11.8(a).

Here two 2 to 4 line decoders, namely decoder-‘X’ & decoder-‘Y’, are used to decode row
and column addresses respectively. A cell in this array can be selected only when both x and
y inputs are activated i.e., at x = y = 1.

The same array can be organized as 8 × 2 memory i.e., 8 words each of length 2-bits.
Still the storage capacity remains 16-bits. This is shown in Fig. 11.8 (b). In this case decoder-
Y is replaced by two 1 to 2 line decoders, Y1 and Y2. Both Y1 and Y2 are feeded by the same
address line (A2) and work simultaneously. Thus at any time two columns are activated as
per the truth table given in table 1. Whenever any row is activated, x inputs of all the 4-cells
in that row will be activated. Since two columns are activated at a time, two of the memory
cells in the activated row will get their y input activated. Thus two memory cells have both
x and y inputs activated i.e. two cells are selected. Alternately with this organization we can
access a group of 2-bits at a time.

The array of Fig. 11.8 (a) can be organized as 4X4 memory i.e. 4 words each of length
4-bits. Still the storage capacity remains 16-bits. This is shown in Fig. 11.8 (c). To do so,
decoder-Y is removed and cells are connected only to decoder-X. Thus to select memory cells
only x inputs have to be activated. Whenever a row is activated x inputs of all the 4-cells are
activated i.e. all the 4-cells of that row are selected. In other words this organization can
access a group of 4-bits at a time. Infact this addressing is an example of linear addressing
because only rows have to be activated and columns are always selected.

Memory Fundamentals 465

A2 Co lumn Address

Co lumn Address

1 to 2 Line Decoder
“Decoder-Y ”1

C 0 C 1 C 2 C 3

Ce ll
0 -0
X Y

Ce ll
0 -1
X Y

Ce ll
0 -2
X Y

R 0

R 1

R 2

Ce ll
3 -0
X Y

Ce ll
3 -1
X Y

Ce ll
3 -2
X Y

Ce ll
3 -3
X Y

R 3

Read/W rite
Control
C ircu it

Read
W rite

CS

D /D
b it-b

in o u t
0

2 to 4
L ine

Decoder

Decoder
“X”

A1

A0

1 to 2 Line Decoder
“Decoder-Y ”2

Ce ll
0 -3
X Y

Row Address

Read/W rite
Control
C ircu it

D /D
b it-b

in o u t
1

Fig. 11.8 (b) 4×4 Array organized as 8×2 memory

Table 1 : Truth Table for Fig. 11.8(b)

Column Address Selected

“A2” Columns

0 C0 C2

1 C1 C3

Notice the reduction in number of address lines in each case. In Fig. 11.8 (a) 4-address
lines were used where as in Fig. 11.8 (b) 3-address lines and in Fig. 11.8 (c) only 2 address
lines were used. It is because by increasing the word length the total numbers of words are

466 Switching Theory

reduced. When more than one cell (i.e., group of cells) is accessed at a time than one storage
location indicates a group of cells. Recall that a group of bits (or cells) is nothing but a word.
It is a simple consequence of equation (1) and (2).

Cell
0 -0
X

R 0

R 1

R 2

2 to 4
L ine

Decoder

Decoder
“X”

A 1

A 0

Ce ll
3 -0
X

Cell
0 -1
X

Cell
3 -1
X

Cell
0 -2
X

Cell
3 -2
X

Cell
0 -3
X

Cell
3 -3
X

Read/W rite
Control
C ircu it

Read
W rite

CS

Read/W rite
Control
C ircu it

Read/W rite
Control
C ircu it

Read/W rite
Control
C ircu it

R 3

D /Din o u t

b it-b 0

D /Din o u t

b it-b 1

D /Din o u t

b it-b 2

D /Din o u t

b it-b 3

Row
Address

Fig. 11.8 (c) 4×4 Array Organized as 4×4 (4 words of length 4-bits) memory

by equation (1) we get

 No. of words = Storage Capacity (in bits)
Word length (in bits) ...(3)

but by equation (2) we get 2n > No. of Words

where n = no. of address lines

Putting it into equation (3) results

2 Storage Capacity (in bits)
Word length (in bits)

n ≥ ...(4)

The equation (4) clearly shows that number of address line ‘n’ is inversely proportional
to word length. Thus increasing word length will cause a reduction in no of address lines.

Example. A memory has cell array of 32 × 32. What would be the required number of
address lines if the word length is

(i) 1-bit (ii) 2-bits (iii) 4-bits (iv) 8-bits (v) 16-bits

Also find out the number of words in each case. What is the storage capacity of this
memory in bits and in bytes?

Memory Fundamentals 467

Solution. We know that since a single cell stores 1-bit, total number of cells constitutes
the storage capacity of this memory.

Given array is 32 × 32 so,
No. of storage cells = 32 × 32 = 1024

Storage capacity = 1024 bits or 1 Kbits = 128 bytes
Number of address lines can be calculated by equation 4

when word length is 1-bit
2n > 1024/1 => 2n = 1024/1 =>2n = 1024 => n = 10 lines

when word length is 2-bits
2n > 1024/2 => 2n = 1024/2 => 2n = 512 => n = 9 lines

Similarly for other word lengths address lines required can be calculated.
The number of words can be calculated by equation 2 given as

2n = No. of Words => 2n = No. of Words
The value of 2n for each case is calculated already. So 1024 words can be accessed when

word length is 1-bit, 512 words can be accessed when word length is 2-bit, and so on.

Cell
0 -0
X

R 0

R 1

R 2

2 to 4
L ine

Decoder

Decoder
“X”

A1

A0

Ce ll
3 -0
X

Cell
0 -1
X

Cell
3 -1
X

Cell
0 -2
X

Cell
3 -2
X

Cell
0 -3
X

Cell
3 -3
X

Read/W rite
Control
C ircu it

Read
W rite

CS

Read/W rite
Control
C ircu it

Read/W rite
Control
C ircu it

Read/W rite
Control
C ircu it

4 to 1 Line
M ultip lexer

1 to 4 Line
Demultip lexer

D /Doutin

Co lumn
Address

R 3

C 0 C 1 C 2 C 3 C 0 C 1 C 2 C 3

Fig. 11.9 As 16 × 1 Memory Organization

468 Switching Theory

A slightly different organization of 4 × 4 memory cells as 16 × 1 memory is shown in
Fig. 11.9. Compare the Fig. 11.9 with Fig. 11.8 (a). Here instead of using a column decoder,
one 4 to 1 line MUX and a 1 to 4 line DeMUX is used. Whenever any row is activated all
the 4-cells are selected. If read operation is requested, the multiplexer connects one of the
selected cells to Din/Dout output line. If write operation is requested, then demultiplexer
connects its input line (i.e. Din/Dout line) to one of its output line which is connected to one
of the cells which were selected by activating the row. The select input of both MUX &
DeMUX are feeded with the column address lines.

11.4.5 Classification of Semiconductor Memory
The semiconductor memory devices can be categorized in several ways according to their

functional and architectural characteristics. Fig. 11.10 shows the most general classification.
As shown they fall in two general categories.

• Read Write Memory or Random Access Memory (RAM)

• Read Only Memory (ROM)

Read Write Memories or RAMs are those memories, which allows both read & write
operation online. They are used in applications where data has to change continuously. They
are also used for temporary storage of data. Since each cell is a flip-flop a power off means
loss of data. Thus the RAMs are Volatile Storage Devices.

ROMs are those memory devices, which allows only read operation online and there is no
write mode. ROMs are needed in applications where data does not change e.g. monitor
programs, mathematical constants etc. Since the data is permanently stored in ROM, power
failure does not result in loss of data. Hence ROMs are Non Volatile Storage Devices. In fact
ROM is also a random access memory, but in practice saying RAM refers to read write memory.

Fig. 11.10 Classification of Semiconductor Memories

Memory Fundamentals 469

Both the RAM & ROM are further divided into other subcategories, as shown by figure.
We will define each of them in this section whereas detailed discussions proceed in the
subsequent sections.

Primarily both RAMs & ROMs are classified as Bipolar and MOS memory depending
upon the type of transistors used to construct the individual cell. If the cells are formed by
using bipolar (or MOS) transistors the chip is called bipolar (or MOS) memory chip. High-
speed operation is possible with bipolar chips but their storage capacity is lesser. However
economical MOS/CMOS chips have greater storage capacity, reduced size, and lesser power
requirements.

Static RAM (SRAM) is a read write memory that uses two cross-coupled transistor (either
bipolar or MOS) working as Flip-Flop to form the basic memory cell. SRAM holds the stored
data indefinitely if power is on, hence the name static. SRAMs are very high speed but costly
memories. A Non Volatile RAM (NVRAM) is formed by using battery backed up SRAM.

Dynamic RAM (DRAM) is a read write memory that uses a capacitor in conjunction with
a MOS transistor to store 1-bit. Since the capacitors are leaky, they cannot hold the charges
permanently. So they must be recharged (refreshed) periodically to hold the stored data,
hence the name dynamic. They are slower than SRAMs but their storage capacity is greater.

The ROMs are categorized according to the data storing process. The mechanism that
stores the data into ROM is called as programming mechanism.

A simple ROM is programmed during the manufacturing process according to the data
specified by the user. Such a ROM is referred as Mask ROM or Mask Programmable ROM.

A PROM (Programmable ROM) is a type of ROM that can be programmed by the users
in the field. They are also referred as Field Programmable ROM. But once programmed they
can not be altered.

An EPROM (Erasable Programmable ROM) is another type of field programmable ROM
that can be reprogrammed by the users after erasing the stored data. The erase operation
is performed optically which erases all the data stored in EPROM. Selective erase i.e. erasing
just a segment of data is not possible with EPROMs.

An EEPROM (Electrically Erasable Programmable ROM) is another type of field
programmable ROM that can be programmed by the users as often as required but after
erasing the stored data. The erase operation is performed electrically which allows selective
erase.

11.4.6 Semiconductor Memory Timing
In this section we are concerned with timing sequences which must be considered for any

type of memory operation. Although these timing requirements may not be precisely applicable
to all types of memories, but it is useful to grasp the concept. The time duration and sequence
in which various signals have to be activated is of great importance. Manufacturer’s data
sheets of the memory ICs specify these timing requirements. If any of these parameters are
not followed then the manufacturer does not guarantee the intended operation. It is expected
that design engineer will come out with the necessary access circuitry that meet these timing
requirements for proper operation.

Based upon the discussions we had in earlier articles of this chapter we can list out
some of the operational requirements.

• A valid memory address must be applied to the address input.

470 Switching Theory

• Before initiating any operation the chip must be enabled through–CS signal line.

• The appropriate control signal then is applied for a certain time.

More or less all type of memory operations is followed in above-mentioned sequence. For
the sake of easiness we first consider the memory write operation and then read operation.
The readers are advised to devote some time to understand these waveforms.

11.4.6.1 Memory Write Operation
Memory Write operation means setting the status of the selected memory cell either to

1 or to 0 according to the data supplied through the data bus. The timing waveforms for a
typical memory write operation is shown in Fig. 11.11A. A close inspection reveals that to
write a data to a memory location one must–

• Apply a valid address to the address bus to select a location.

• Initiate chip select signal by making CS = 0.

• Apply the write control signal by making WR = 0 for a certain time.

• Apply the data to be written at the selected memory location to the data bus for
a certain time.

In response the information present at data bus replaces the word at addressed memory
location that might have been stored in it. The waveform also shows the different times that
are typical and are explained as below:

Fig. 11.11 (a) Simplified Memory Write Cycle Waveforms

Write Cycle Time (tWC): This is defined as the minimum amount of time for which a valid
address must be present at the address bus for writing a memory word. As earlier defined
this is the minimum time that must lapse between two successive write cycles.

Address Setup Time tSU (A): It is defined as the minimum time for which the address
must be stable at the address bus before WR goes low.

CS

Memory Fundamentals 471

Address Hold Time tH (A): This is defined as the minimum time for which the valid

address must be stable at the address bus after WR rises.

Write Pulse Width (tW): This is defined as the minimum amount of time for which WR
must be low in order to store the data in the memory. It must be noted that tW is measured
from the later of write pulse or chip select going low to the write pulse going high. A write
occurs during the overlap of low chip select and low write pulse i.e. when both are low. Also
the write pulse should be high during all address transitions.

Data Setup Time tSU (D): This is defined as the minimum time for which the data to be
written at addressed location must be held stable at the data bus before WR rises.

Data Hold Time tH (D): This is defined as the minimum time for which the data to be
written at addressed location must be held stable at the data bus after WR rises.

11.4.6.2 Memory Read Operation
A Read operation, also called sensing, means detecting the status (i.e. information) of

selected memory cell that weather it is 1 or 0. The timing waveforms for a typical memory
read operation is shown in Fig. 11.11B. A close inspection reveals that to read a data from
a memory location one must

• Apply a valid address to the address bus to select a memory location.

• Initiate chip select signal by making CS = 0.

• Apply the read control signal by making RD = 0 for a certain time.

In response the information from addressed memory location is transferred to the data
bus. The waveform also shows the different times that are typical and are explained as below.

Fig. 11.11 (b) Simplified Memory Read Cycle Waveforms

472 Switching Theory

Read Cycle Time (tRC): This is defined as the minimum amount of time for which a valid
address must be present at the address bus for reading a memory word. As earlier defined
this is the minimum time that must lapse between two successive read cycles.

Read Access Time (tA): Read Access Time or Access time is defined as the maximum delay
between the appearance of stable address and appearance of stable data. This definition is
based upon the assumption that chip select goes low after the application of address.
Access time is at the most equal to the read cycle time i.e. tA < tRC .

Chip Select to Output Valid time (tCO): This is the maximum time delay between the
beginning of chip select signal and appearance of stable data at the data bus. It is some times
also defined as the access time from chip select tA(CS).

Read to Output Delay (tRD): This is the maximum time delay between the beginning of
read signal and appearance of stable data at the data bus. It is some times also defined as
the access time from read tA(RD) or read to output valid time.

Chip Select to Output Disable tDIS(CS): This is the maximum time delay after the end
of chip select signal for data bus to go to high impedance state i.e. to get disabled. It is also
defined as tOTD, output 3-state from deselection.

Read to Output Disable tDIS(RD): This is the maximum time delay after the end of read
signal for data bus to go to high impedance state i.e. to get disabled.

Generally tDIS(CS) = tDIS(RD) = tOTD

Data Hold Time tH(D): This is defined as the minimum time for which the stable data
is available at the data bus after the end of the valid address. It is also defined as tV(A), output
data valid after change in address or output hold from change in address tOHA.

Example. For a memory the read & write cycle times are 100 nsec. Find out the
bandwidth for this memory. What will be the access rate if access time is 80 nsec?

Solution. By section 11.2 we know that Data Transfer Rate or Bandwidth of a memory
is given as

bC = 1/tC words/sec

so bandwidth for given memory is bC = 1/(100 × 10–9)

bC = 10 × 1011 words/sec.

Again by section 6.2 we know that Access Rate of a memory is given as

bA = 1/tA words/sec

so access rate of given memory is bA = 1/(80 × 10–9)

bA = 12.5 × 106 words/sec.

or bA = 125 × 105 words/sec.

11.4.7 Read Only Memory
A read only memory (ROM) is a semiconductor storage device that allows only read

operation to be performed on it. It is used to store the information permanently. It is an
essential part computer system that stores boot up information required at the time of switch
on by the operating systems. It has become an important part of many digital systems
because of its high speed, large storage at low cost, and non-volatility. It offers great flexibility
in system design and has got many applications including implementation of various complex
combinational logic, lookup tables, character displays, embedded systems etc.

Memory Fundamentals 473

ROMs are mainly classified by the method that is used to store the information. The
mechanism that stores the data into ROM is called as programming mechanism.

Basic organization of a ROM remains same as was discussed from 11.4.1through 11.4.4
with the only difference that ROMs do not contain write signal. The actual consideration here
would be the type of cells that a ROM device must use. Before going for discussion on the
typical cells for different kind ROM cells we first consider some simpler ROM organization
that can be worked out in labs to demonstrate the idea. The logic diagram of ROM unit is
shown in Fig. 11.12.

Fig. 11.12 Logic Symbol of A ROM Memory Unit

11.4.7.1 Some Simple ROM Organizations
Diode Matrix ROM: They are the simplest types of ROM. They were discussed previously

in chapter 5.

Multiplexer ROM: It is yet another simple type of ROM. In this case the multiplexer
inputs are fixed to logic 1 or logic 0 as desired and the select inputs can be used as address
lines to select the particular memory word. Figure 11.13 shows such a 4 × 1 ROM with the
truth table of stored information.

Fig. 11.13 (a) A 4 to 1 line multiplexer Fig. 11.13 (b) Truth Table for ROM in
connected as 4 × 1 ROM Fig. 11.13(a)

It is interesting to note that forming a multiplexer tree with such fixed data connections
can make a ROM of larger word length thus increasing the storage capacity. Such a ROM is
shown in Fig. 11.14. The figure shows a 4 X 2 ROM with a storage capacity of 8-bits as
opposite to the ROM of Fig. 11.13 which is a 4-bit ROM of word length of 1-bit. Note that the

474 Switching Theory

address lines are shorted together as usual to address the bits of same location from two
MUX. Readers are encouraged to find out the words stored at different locations in this ROM.

Fig. 11.14 Two 4 to 1 line multiplexer connected as 4 × 2 ROM.

OR-Gate ROM: It is yet another simpler ROM but more versatile than the multiplexer
ROM. In this case a decoder and n-input OR gates are used. The selection of decoder depends
upon the number of words needed to store. The word length determines the number of OR-
gates. The select inputs are used as address lines to select the particular memory word.
Figure 11.15 shows such a 4 × 4 ROM.

Fig. 11.15 16-bit, 4 × 4 ROM using OR-Gates and 4 to 1 line decoder

Memory Fundamentals 475

Assuming that upon activation each of the decoder line becomes high we get that location
10 stores the word 0100. The readers are advised to find out the words stored at other
locations.

An interesting fact can be noted from all the above organizations that each of them
corresponds to AND-OR organization. Diode matrix is an AND-OR configuration and both
multiplexers & decoders are internally AND-OR networks. This is nothing but Sum of Product
(SOP) realization. This implies that the ROMs can also be used for SOP realization!!

11.4.7.2 Mask Programmed ROMs
In general the word ROM is used to refer to Mask Programmed ROMs. It is the type of

memory, which is permanently programmed during the manufacturing process according to
the information supplied by the users. Upon receiving the information to be stored into the
ROM the manufacturer prepares a photographic template of the circuit, called Photo Mask.
This photo mask is actually used for production of ROM ICs storing the needed information.
Since photo mask is used for programming such a ROM is called Mask Programmed ROM.
Due to the various fabrication processes involved in such production like photomasking,
etching, diffusion, Aluminium layering etc the overall cost is high. This makes them unsuitable
when only a small number of ROMs are needed. For this reason mask programmed ROMs
are always used for high volume production.

Both the BJTs and MOS devices can be used as basic memory cell for this kind of ROM.
Fig. 11.16 shows the Bi-polar transistors connected to store logic 1 and logic 0. As shown the
base connected transistor can be used to store logic 1. If row line is connected to the base
of transistor then whenever ROW line goes high transistor turns ON and +VCC is connected
to column line which is interpreted as Logic 1. But if base is unconnected the high on row
line does not make it working and status of column line remains low which is interpreted as
Logic 0.

Fig. 11.16 (a) A Bi-POLAR ROM ‘1’ Fig. 11.16 (b) A Bi-POLAR ROM

Cell storing Cell storing ‘0’

In the similar way Gate connected MOS transistor can be used to store Logic 1 and
floating Gate MOS transistor can be used to store Logic 0. This is shown in Fig. 11.17.

When organizing the ROM array the output data lines of individual cells in the same
column are connected together as shown in Fig. 11.18. This is done by assuming that such
connections will form Wired-ORing and such assumption is valid for most of the semiconductor
technology.

476 Switching Theory

Fig. 11.17 (a) A MOS ROM Cell storing ‘1’ Fig. 11.17 (b) A MOS ROM Cell storing ‘0’

Fig. 11.18 An Array of Bipolar ROM Cells

Finally column multiplexers may be used to select the data from a particular column
only. This organization identical to the one, shown in Fig. 11.9.

11.4.8 Programmable Read Only Memory (PROM)
The mask programmed ROMs have disadvantage that they are not flexible and with low

volume production they become highly expensive. A Programmable ROM is a type of ROM
which efforts to minimize these two disadvantages. These ROMs can be programmed by the
users in the field, thus they are also called field programmable ROMs. These ROMs provide

Memory Fundamentals 477

some flexibility to user but their disadvantage is that they can be programmed only once.
PROMs are available with both the Bipolar and MOS technology. Conceptually the programming
technique in both technologies is same, but the real difference appears in the actual
programming mechanism. In case of Bipolar technology an instantaneous current pulse is
used for programming where as the current pulse is applied for certain period (typically for
a few msecs) of time in case of MOS technology.

11.4.8.1 Bi-Polar PROMs
Fig. 11.19 shows a Bipolar PROM cell that allows such kind of programming in PROMs.

As shown the emitter is connected with a fusible link that can be blown off or burned by
applying a high current to it. When the fuse remains intact it stores logic 1 and when it is
burnt it stores logic 0. Initially all the cells have fuse intact i.e. they all stores logic 1 and
at the of time of programming users can selectively burn them out to store logic 0.

Fig. 11.19 A Bipolar PROM cell with fusible link

This shows why these memories can not be reprogrammed. Since programming the
PROM involves burning the fuse it is also referred as burning.

In Bipolar PROM cells the fusible links are always placed between emitter of the
transistor and the column/data line, as shown in Fig. 11.19. Such types of cells are called
fuse cells. Basically there are types of fuse technology used in Bipolar PROMs as briefed
below.

• Metal Links are formed by depositing a very thin layer of nichrome as material.
This fuse can be burned during programming to store logic 0 by flowing large
currents through them.

• Silicon links are formed by depositing a thick layer of polycrystalline silicon. This
fuse can be burned to store logic 0 by flowing current pulse train of successive
wider pulses. This programming process causes a temperature upto 1400°C at the
fuse location, and oxidizing the silicon. This oxidization forms insulation around the
opened link.

• Avalanche Induced Migration (AIM) Process this programming technique uses two
PN junction diodes connected back to back as shown in Fig. 11.20. During the
programming the diode D1 is in reversed bias. There flows a large current in
reverse direction due to avalanche of electrons. The heavy reverse current along
with heat generated at the junction causes some aluminium ions to migrate. Due
to this the base to emitter junction is shorted. Although this process requires
higher currents and voltages than the earlier two, but this is faster.

478 Switching Theory

Fig. 11.20 A Shorted Junction Cell

11.4.8.2 MOS PROMs
The fuse mechanism shown for Bipolar PROMs does not works for MOS technology

where high current and resistance levels required for programming is incompatible with MOS
impedance levels. Commonly used MOS fabrication techniques are

• Floating Gate Avalanche Injection MOS (FAMOS)

• MAOS

In FAMOS PROMs silicon gate MOSFET with no electrical connection to the gate is used
as storage device. In this case gate is floating in an insulating layer of silicon dioxide. The
operation of such device is based on charge transport on application of high voltage to the
floating gate. This charge gets trapped in the gate when voltage is removed, as there is no
electrical connection for gate. Logic symbol of this device is shown in Fig. 11.21.

Fig. 11.21 Logic Symbol of FAMOS Device

It is interesting to note that the charged trapped in floating gate of FAMOS device can
be removed if the cell is exposed to high energy UV radiation for some times.

A MOS memory cell that uses Alumina (Al2O3) and silicon nitride as gate dielectric for
charge storage is called MAOS memory element. Applying negative and positive polarity
voltages can program the MAOS elements. The MAOS elements can be erased by applying
opposite polarity voltage at gate and thus provides reprogramming.

Note that the MOS techniques provide reprogramming feature as opposite to Bipolar
technology.

11.4.8.3 PROM Programming
As explained above the programming of PROM requires varying amount of currents to

be supplied to store the information. This is done through a special device called PROM
Programmer that mainly contains programmable pulse generator to meet requirements of
different devices. A simplified programming setup is shown in Fig. 11.22.

Memory Fundamentals 479

Fig. 11.22 Simplified PROM Programming Setup

As earlier discussed initially PROMs will contain all 1’s or all 0’s. Let initially all 1’s are
stored then to store information first of all find out the bit positions where 0s have to be
stored. Connect the corresponding output bit line i.e. Qi to the pulse generator. The address
generation unit selects the location of the word to be programmed. After the selection of word
pulse generator supply the appropriate amplitude pulse to burn out the fuse, thus storing 0
at connected bit positions. The process is repeated for all memory words and the PROM can
be programmed completely. Although not shown in figure all the power supply and other
connections are assumed to be present for PROM before programming.

11.4.9 Erasable Programmable ROM (EPROM)
One disadvantage of PROM is that once programmed it can not be reprogrammed. Any

mistake during the programming can not be corrected and the whole chip may become
useless. An EPROM overcomes this problem by providing an erase operation. EPROM is a
PROM device that can be reprogrammed as many times as needed.

Note that both ROMs & PROMs can be either Bipolar or MOS but EPROMs can only be
MOS. An indication of this fact was given in previous section when discussing the FAMOS &
MAOS devices. In its simplest form an EPROM can be viewed as a FAMOS PROM with an
additional gate, called control gate. Fig. 11.23 shows the basic structure of such a device and
its logic symbol. The programming mechanism is same as previous and to erase UV radiation
is used.

Fig. 11.23 A Structure of EPROM CELL

480 Switching Theory

Shown in the figure is an n-channel enhancement mode MOSFET with insulated gate
architecture. The additional gate, called control gate, is formed within the SiO2 layer. The
control gate is connected to the row address line. As usual presence or absence of stored
charge represents the data.

11.4.9.1 EPROM Programming
To program the memory cell the floating gate must be charged i.e. trap the charge. To

accomplish this a high positive voltage is applied between source & drain is applied. A slightly
higher +ve voltage is applied at the control gate. Thus high electric field strength is developed
which highly energizes the electrons. These energetic electrons thus reach to floating gate
and charge is accumulated. As the more electrons (i.e. negative charges) are accumulated the
field strength reduces and further electron accumulation is inhibited. Since an insulating
layer (SiO2) surrounds this gate, no discharge path is available for accumulated electrons.
Thus charge carriers remain trapped at gate. Thus the programming requires charging the
floating gates of individual memory cells. Programming of the EPROMs requires higher
current levels for different times. For this purpose a special device, called EPROM Programmer,
is used. All the EPROM chips must be physically removed from the memory boards and be
connected to the EPROM programmer for reprogramming or programming. This is considered
as the disadvantages of the EPROM.

To reprogram all cells of EPROMs must be erased. Illuminating EPROM to strong UV
radiations carries out the erase operation. For this reason they are some times called as UV
erasable PROMs or simply UV EPROMs. It typically requires a radiation of wavelength of
about 254 nm to be present for about 20 minute. The photons of the incident radiation provide
sufficient energy to the trapped electrons to escape to substrate through the SiO2 layer.

Fig. 11.24 CYRSTAL WINDOW to ERASE DATA from EPROM

The EPROMs are provided with a transparent crystal window on the top of the IC, as
shown in Fig. 11.24 to allow UV rays to enter to the chip to erase the data. Upon illumination
contents of all the locations are erased, which is considered as the biggest disadvantage of
EPROMs. At the time of working the EPROM window is covered with the opaque sticker to
prevent it from unwanted exposure from sunlight or from other sources.

The EPROMs can be erased by direct sunlight in about one week or by room level
fluorescent lighting in about one to three years.

11.4.9.2 The 27XXX EPROM Series
A popular EPROM family is 27XXX series and commercially available from many

manufacturers. In the IC number XXX represents the storage capacity in Kbits. For example
in IC 2732A XXX = 32 means it can stores a total of 32 Kbits. However all ICs of this series

Crystal Window
for Erasing

Memory Fundamentals 481

are organized to have a word length of a byte i.e. 8-bits. Hence 2732A is a XXX/8 = 32 Kbits/
8 = 4Kbyte or 4KB memory device. Since length of each memory word is byte this IC contain
4 K (4 × 1024 = 4096) memory location. Thus by equation 4 get that IC 2732A must have 12
address lines (as 212 = 4096) to select any of the 4096 words. In the similar way we can work
out for all the members of this family to find out the storage capacity and the width of address
bus. Data bus width will always be same as 8-bit. Pin diagram of IC 2732A is shown in
Fig. 11.24. The signal is OE VPP/ a dual purpose signal. Under the normal operation a logic
0 on this pin allows the data from selected location to appear at data output lines. The 2732A
is in programming mode when it is connected to 21V. When 2732 is erased all the memory
cells are returned to logic 1 status. The programming is done by applying the required input
data on the O0 – O7 pins.

Fig. 11.24 INTEL 2732A EPROM IC, 4K × 8 IC

Fig. 11.25 list out a short summary of some models in 27XXX series. Also note that these
chips are fully TTL compatible and has an access time less than 450 nsec that permits an
access rate (most of the time Data Transfer Rate) of approximately 2 × 1011 memory words/
sec or 6 × 106 bits/sec.

EEPROM MEMORY STORAGE CAPACITY

27XXX ORGANIZATION KBYTES BITS

2708 1024 × 8 1 KB 8192

2716 2048 × 8 2 KB 32768

2732 4096 × 8 4 KB 327118

2764 8192 × 8 8 KB 1155311

27128 16384 × 8 16 KB 131072

27256 32768 × 8 32 KB 262144

27512 65536 × 8 64 KB 524288

Fig. 11.25 27XXX SERIES EPROMs

11.4.10 Electrically Erasable Programmable ROM (EEPROM)
One disadvantage of EPROM is that erase operation erase all the memory cells completely

and reprogramming involves entering the complete data. There is no option of selective erase.
Another disadvantage is that for reprogramming the chip must be removed physically from the

482 Switching Theory

main boards. An EEPROM, also called as E2PROM, overcomes these problems which allows
selective erase operation and there is no need to remove the chip as it requires different voltage
levels which can be provided on board. In EEPROMs the erase operation is performed electrically
as opposite to EPROMs. For this reason they are also called as Electrically Altered PROM i.e.
the EAPROM. In these memories both the erase and programming can be done electrically by
applying the controlled electrical pulses to the IC. Thus changes can be made to selected
memory locations only. The E2PROMs can be programmed one byte at a time.

Recently a newer E2PROM called flash EEPROM is introduced by Intel Corporation that
has very simpler cells and thus have greater packing density. The flash EEPROMs devices
can be programmed faster as compared to normal EEPROM and can be erased sector-by-
sector. While the EEPROMs can be erased and programmed for parts of code, the entire flash
EEPROMs memory must be erased & reprogrammed completely. The future seems to opt for
flash EEPROMs because of their simpler cells, high speed, and high density which means
lower cost per bit.

11.4.11 The Random Access Memory (RAM)
The Random Access Memory refers to the read write memory i.e. a memory that allows

both reading and writing data online. In a computer system these devices are used for
temporary or scratchpad storage. Basic organization of a RAM remains same as was discussed
from 11.4.1 through 11.4.4 with no changes.

RAMs are also available with both the Bipolar and MOS technology. Conceptually the
operation in both technologies is same, but the real difference appears in the way they store
the binary information in the memory cell. As shown in subsection 11.4.5 RAMs are classified
as Static and Dynamic. The static RAM can be either Bipolar or MOS but dynamic RAM can
only be MOS. Both types of RAMs are discussed in subsequent subsections.

11.4.12 Static Random Access Memory (SRAM)
Random Access Memories that consist of circuits that can retain the information as long

as power is applied are referred as Static Random Access Memories. Flip-flop forms the basic
memory element in a SRAM device. A static RAM contains an array of flip-flops, one for each
bit. Logic diagram a SRAM cell is shown in Fig. 11.26. The figure shows an S-R latch with
required signals. As shown the cell can only be selected by placing logic 1 to both the ROW
& COL lines. Data can be entered to this cell only when WR=1 and RD=0 when both row &
col are activated. At the time of writing the data the cell output is disabled and is available
only when RD=1 and WR=0.

Fig. 11.26 LOGIC DIAGRAM of BASIC SRAM CELL

Memory Fundamentals 483

Since SRAM contains array of flip-flops, a large number of flip-flops are needed to
provide higher capacity memory. For this reason simpler flip-flop circuits using BJTs and MOS
transistors are used for SRAM. This helps to save chip area and provides memory IC at
relatively reduced cost, increased speed and reduces the powers dissipation as well. The static
RAMs have very small access times typically less than 10 nsec. SRAM with battery backup
is commonly used provide non-volatile RAM (NVRAM).

11.4.12.1 The Bi-Polar SRAM Cell
For the reasons stated above we use simpler flip-flop circuits to implement flip-flops in

memory. The circuit shown in Fig. 11.27 (a) forms basic bipolar latch that can be used to store
1-bit of binary information. Note that it contains two cross-connected collector coupled transistors
Q1 and Q2. At any time one of the transistor remains on and other remains off i.e. status of
their collector are always complement to each other thus satisfying the basic definition of flip-
flop. That’s why the data lines are labeled as b and b .

 Fig. 11.27 (a) Basic bipolar Latch (or Storage Cell) Fig. 11.27 (b) Basic bipolar SRAM Cell

Fig. 11.27(b) shows the same latch but along with the necessary control and the data
signals. Use of multi-emitter transistors accommodates the necessary signals of BJT SRAM
cell. To read or write to this cell both the row and col lines must be high.

To write the two bit lines are placed with required status and row and col lines are
placed high. This causes the two lower emitters of both the transistors to stop current
conduction. If a logic 1 was to be store then bit line b placed as b = 1, this makes upper
emitter of Q1 to cease to conduct but the upper emitter of transistor Q2 will remain conducting

as its bit line is placed as b = 0. This makes Q1 to go to off state and Q2 to go to on state,
thus giving status of Q1 as logic 1 and Q2 as logic 0. The similar process can be used to store
logic 0 to this cell. Every a time the state of transistor Q1 can be read to sense the status
of this cell.

To read the data from this cell row and col lines are placed high and current flowing
through the upper emitter can be sensed by read amplifier to declare it as 0 or 1.

484 Switching Theory

11.4.12.2 The MOS SRAM Cell
A CMOS realization of SRAM cell is shown in Fig. 11.28. The cell comprises two cross-

connected inverters, Q1 and Q2 as inverter 1 and Q3 and Q4 as inverter 2, thus forming a
latch capable of storing 1-bit of information. When the cell stores logic 1 the voltage at point
A is maintained high and that at B is maintained low by having Q1 and Q4 ON and Q2 and
Q3 OFF. Thus if Q5 and Q6 are turned ON by activating the row address line, the bit lines
will have their status respective to voltage at A and B. Finally upon activation of column
address lines Q7 and Q8 turn ON and pass this information to read/sense amplifier. Note that
the bit line is connected to all the cells of a column by forming wire-OR connection. The write
operation for this cell is same as BJT cell in that bit lines are first fixed to required status
and then the cell is forced to enter in that status.

Fig. 11.28 CMOS SRAM Storage Cell

The power supply Vdd is 5 volts in standard CMOS SRAMs and 3.3 volts in low-voltage
versions. The biggest advantage of using CMOS cell is very low power consumption because
the current can flow in the cell only when they are accessed. Otherwise one of the transistor
from each inverter remains OFF ensuring that there is no active path between the supply
voltage Vdd and ground. Although CMOS is slower than the BJT but latest advances have
reduced the difference in the Access time of the two types of SRAM. Also since CMOS devices
have very large packing density, almost all the SRAM devices with capacity more than 1024
bits are MOS devices.

Memory Fundamentals 485

11.4.12.3 SRAM ICs
• IC 7489-114 bit TTL SRAM: Fig. 11.29 shows the pin diagram and logic diagram

along with truth table & signal description. This is a 114-bit SRAM organized as 111
X 4 memory. The data sheet for this memory device specify a maximum read data
delay or access time of 50 nsec. Note that the device contains separate data busses
for input and output. The output of this IC always the complement of bits stored
in the memory. Moreover this IC package provides open collector output thus it
requires external pull up resistors to be used as shown in functional diagram. Note
the third entry of the truth table with the mode of operation as inhibit storage. In
this mode the device simply works as inverter in that the data present at the input
complemented and presented at the output. In this mode neither the data can be
stored nor the data read weather address is applied or not.

1

2

3

4

5

6

7

8

A

M E

W E

D

Q

D

Q

G ND

0

1

1

2

2

16

15

14

13

12

11

10

9

V

A

A

A

D

Q

D

Q

C C

1

2

3

4

4

3

3

7489
16 × 4
SRA M
(TT L)

() P in Descrip tiona

D

D

D

D

1

2

3

4

A

A

A

A

3

2

1

0

Q

Q

Q

Q

4

3

2

17489
16×4

SRA M

1K 1K 1K 1K

Pull up Resistors
+5V

Data
O utpu ts

Data
Inpu ts

Address
Inpu ts

W E M E

W rite E nable

(o r Read/W rite)

M em ory Enab le

(o r Ch ip Se lect)

() Functiona l Log ic D iagramb

Signal Description

M E Selects or Enables the chip when
M E = 0

W E Selects w rite opera tion when
W E = 0
Se lects read opera tion when
W E = 1

A to A0 3 Address lines to se lect any of the
16-words

D to D1 4 4-bit Da ta Inpu t B us
Q to Q1 4 4-bit Da ta O utpu t B us-Data

output is complem ent o f b its
stored .

() S ignal Descriptionc

O pera ting
M ode

Inpu ts

() Tru th Tab led

O utpu t Condition

W rite

M E W E

0 0 Complem ent o f D ata
Inpu ts

Read 0 1 Complem ent o f S elected
word

Inhibit
S torage

1 0 Complem ent o f D ata
Inpu t. No read or w rite
is done

Do
Nothing

1 1 All O utputs H igh

Fig. 11.29 64 bit (16×4) TTL SRAMIC

486 Switching Theory

• TMS 4016-2KB MOS SRAM: Fig. 11.30 shows the pin diagram of this MOS SRAM
device. This device is representative of all other 2K × 8 SRAM MOS ICs such as
Intel 2016, and most popular in this range the 6116 IC. The figure shows the signal
description also, with the help of which truth table for this IC can be worked out.

Fig. 11.30 TMS 4016 MOS SRAM IC, A 2K × 8 IC

An interesting point to note that many of the EPROM ICs and SRAM ICs (such as 27XXX
& 62XXX family) are pin compatible. For example compare the Fig. 11.24 to the figure 11.30.
One can find that few signal names are changed and WR signal is replaced by VPP.

• Popular SRAM ICs are from 62XXX MOS family like IC-6264 a 8K × 8 memory,
IC-62256 a 32K × 8 memory etc. Readers are encouraged to search & list out
several other SRAM ICs from various references.

11.4.13 Dynamic Random Access Memory (DRAM)
SRAMs are faster but they come at high cost, as their cell requires several transistors.

Less expensive RAMs can be obtained if simpler cells are used. A MOS storage cell based on
dynamic charge storage is much simpler and can be used to replace the SRAM cells. Such a
storage cell can not retain the charge (i.e. information) indefinitely and must be recharged
again, hence these cells are called as dynamic storage cells. RAMs using these cells are called
Dynamic RAMs or simply DRAMs.

11.4.13.1 Basic DRAM Cell
A basic DRAM cell is shown in Fig. 11.31, in which information is stored in the form of

charge stored on a capacitor. The cell consists of a MOS transistor and a storage capacitor
C. Information can be stored as presence or absence of charge on capacitor C. But the charge
stored on the capacitor tend to decay with time. It is because of two facts- first even though
the transistor is OFF there flows a small leakage current, and secondly the capacitor itself
has a leakage resistance. The result is charge (i.e. information) can only be retained for a few
milliseconds. Thus to retain the information for a longer period of time the capacitor must
be recharged periodically before charge goes below a threshold value. The process of restoring
charge is called as refreshing. Even though DRAM requires additional circuitry to deal periodic
refresh and destructive read the advantage of greater storage capacity on a single chip make
it worth, as it still offers a low cost per bit solution.

Memory Fundamentals 487

Fig. 11.31 Basic DRAM Storage Cell

• Read and Write Operation to store the information into the cell the row address
line is activated to turn ON the transistor, and a voltage (either high or low
corresponding to 1 or 0) is placed on the bit line. This causes a known amount of
charge transfer to the storage capacitor if status of bit line is 1 and no charge
transfer if bit line is 0. During read, the transistor is turned ON and charge on the
capacitor is transferred to the bit line. A sense amplifier connected to bit line
detects weather the stored charge is below or above a threshold value or not and
accordingly interpret it 1 or 0. Since the read process discharges the capacitor,
information is lost, it called as Destructive Read Out (DRO) process. For this reason
the information that was read out is amplified and written back to the storage cell.
A DRAM cell therefore is refreshed every time it is read. Alternately, the activation
of row line refreshes the cell every time. This forms the basis of periodic refreshing
of DRAM, as we will see later, to keep it from loosing the information. Also note
that transistor itself acts as transmission gate so no additional transistors are
needed as was required in MOS SRAM cell, see Fig. 11.28.

11.4.13.2 One MOS Transistor DRAM Cell
The circuit used for DRAM MOS cells may use one or more transistors. The simplest is

one transistor cell as shown in Fig. 11.32(a). It consists of an NMOS transistor and a MOS
capacitor, CMOS, fabricated on a chip. The equivalent circuit is shown in Fig. 11.32(b), in which
Cj represents the junction capacitance of transistor. If MOS capacitor plate lead & substrate
leads are connected to ground, it then forms a parallel connection of Cj and CMOS. The
storage capacitor is C = Cj + CMOS which can be used to store charge in dynamic cells.

Fig. 11.32(a) Fabrication of One Transistor Fig. 11.32(b) Equivalent Circuit Diagram
 Dynamic Memory Cell

488 Switching Theory

11.4.13.3 DRAM Organization

Fig. 11.33 Organization of n × 1 MOS DRAM Memo

The organization of a DRAM allows many cells to be accessed together by a minimum
amount of circuitry. A DRAM memory contains an array of basic dynamic storage cells as
shown in Fig. 11.33. Readers are advised to study the organization carefully. The organization
is such that upon activation of a row all the cells of that row are selected. Then cells transfer
the stored information to their corresponding bit line. Thus all the cells of the activated row
must be subsequently written back i.e. refreshed, to restore the information. Application of
column address will turn ON any one of the QC transistors connected to the bit line. Thus
the data bit from desired cell is obtained which is then feeded to the sense amplifier before
transferring to the output. Similarly for the write operation only one of the QC transistors
will be turned ON and the data present at the input is transferred to the desired cell. From
the above discussion it is clear that for any operation with the DRAM the row address must

Memory Fundamentals 489

be applied first and then column address is applied. Moreover due to the fact that charge
stored in DRAM cell is very small the actual read and write processes are too intricate. Thus
selecting more than one cell at a time to read and write may create their own unique
problems. For this reason DRAMs are organized to have a word length of 1-bit. An external
circuitry (device) called DRAM controller is used along with DRAMs to attain periodic refresh
of DRAM. Since activation of a row refreshes all the cells in that row, the DRAM controller
simply activates all the rows to refresh entire DRAM. The DRAM controller also takes cares
about all the timing requirements of DRAM chip like after what time span the refresh
operation must be initiated.

11.4.13.4 The DRAM Structure

n/2-b it
Address line

A -A -10 n /2

RD

W R

RAS

CAS

CS

2 × 1
DRAM

n

D IN

D O U T

n/2-b it
Address Input Row

Address
Latch

Co lumn
Address

Latch

RAS

CAS

Row
Address
Decoder

Co lumn
Address
Decoder

2 ×
Ce ll Array

n /2 2 n /2

D O U T

D IN

CS

RD W R

Fig. 11.34(a) General Block Fig. 11.34(b) General structure of A 2n × 1 DRAM
Diagram of a 2n × 1 DRAM

The generalized structure of DRAM memory is shown by Fig. 11.34. Let us first turn our
attention to the generalized block diagram of a DRAM shown in Fig. 11.34(a). Since DRAMs
have higher storage capacity the requirements of address lines are also large. That means
too many pins have to be devoted to the address bus. To deal with, manufacturers have
multiplexed the address bits in two groups; the row address and the column address. That’s
why the diagram shows n/2-bit address bus. The two signals RAS and CAS are used to tell
when row address and when the column address respectively, is applied. RAS stands for row
address strobe and CAS stands for column address strobe. A low on any of these two lines
strobes the address present on address bus into an internal latch. The latch can be row
address latch if RAS is activated or column address latch if CAS is activated, as shown in
Fig. 11.34(b). Output of these two latches are used by the two decoders to address the required
cell. Note that the CAS also performs the chip select function is most of the DRAMs. As
previously stated for any operation the first the row address followed by RAS is applied. After
that the column address of desired cell followed by CAS is applied. The DRAM controller
handles this sequence for the users and fulfills the required timing between the signals. In
fact DRAM controllers are invisible for users from operational point of view, even though they
actually communicate with them only. It is DRAM controller that actually communicates with
DRAM IC by means of various signals. A practically useful DRAM is IC-4116 whose pin

490 Switching Theory

diagram is shown in Fig. 11.35. This IC employs architecture identical to the one shown in
Fig. 11.34(b) but utilizes a 128 X 128 cell array. Note that the IC does not have any chip select

signal thus it is performed by the CAS signal.

1

2

3

4

5

6

7

8

V

D

W E

RAS

A

A

A

V

B B

0

1

2

IN

D D

16

15

14

13

12

11

10

9

V

CAS

D

A

A

A

A

V

S S

O U T

6

3

4

5

C C

IC -4116
16K × 1

(+ 1 2 V) (+ 5 V)

(0 V)(– 5 V)

Fig. 11.35 Pin Diagram of IC 41111 A 111K×1 DRAM

Refreshing DRAMs. To refresh, the DRAM controller utilizes the fact that activation of
a row refreshes all the cells connected to that row. The DRAM controller simply outputs a
row address and activates the RAS signal to refresh a row. Such a memory cycle is called
as RAS cycle. The total number of such cycles needed to refresh all the rows constitute one
refresh cycle that refreshes the entire DRAM. The DRAM controller initiates a refresh cycles
after every predetermined time interval as specified by data sheet of DRAM. Yet another
method is to interleave the refresh operation in which only one row is refreshed at a time
and each successive row is refreshed after a fixed amount of time. Consider for example a
DRAM having 5 rows and after 5 seconds datas are lost. Then it is require to refresh each
successive row within 1 seconds so that all the rows are refreshed once in every 5 seconds.
Readers are encouraged to figure out situations where interleaved refreshing is useful and
compare this scheme with refreshing all the rows at once. In either the scheme when refresh
operation is taking place the DRAM can not be accessed.

Simm Module. As shown in figure the DRAMs have a word length of 1-bit where as most
modern computers requires to read or write an m-bit word at time. Therefore m identical
DRAM ICs are connected in parallel to give m-bit word length. This is done by mounting the
ICs on a single board called, Single Inline Memory Module or simply SIMM module. For
example IC 41256 is 256K × 1 DRAM where as 41256A8 is a SIMM module using 8 41256 ICs
that offers a 256K × 8 DRAM memory.

Page Addressing Mode. A special addressing mode that is available with most
DRAMs to support the transfer of large data block is page addressing mode. In this case the
data bits are stored in successive cells of the same row. Thus for the data transfer the row
address has to be specified only once and by specifying the successive column address the data
bits can be read. The data transfer rate becomes double in this case as compared to the
normal case in which each time a cell is accessed both the row & column address must be
issued.

Memory Fundamentals 491

Pseudostatic DRAMs. Newer DRAMs are available in which the refresh logic is
incorporated in the memory chip itself. In this case the dynamic nature of these memories
are almost invisible. Such a dynamic memory is referred as pseudostatic, or simply PDRAMs.
Note that when internal refreshing is going on the device can not be accessed.

11.4.14 SRAMs and DRAMs
Having been studied the SRAMs & DRAMs it is worth to devote some time in comparative

study of the two memories. Here are the few, which must be appreciated for the two types.

• The SRAMs cells can either be Bi-polar or MOS but DRAM cells can only be MOS.

• The DRAM cells are much simpler than the SRAM cells.

• SRAMs can retain information as long as power is ON where as DRAMs loose the
retained information after a small time and thus requires refreshing.

• Data storage in DRAMs involves charge storage where as in SRAMs it involves ON/
OFF the transistors.

• DRAM cells can be constructed around a single transistor where SRAMs may
require 11 transistors per cell. Thus DRAMs offer higher storage density. Infact the
DRAMs are among the densest VLSI circuits in terms of transistor per chip. Due
to this almost all the RAMs greater than 16KB are DRAMs.

• DRAMs are cost effective memory solution than the SRAMs.

• The actual read/write mechanism of DRAMs are much more tedious than that of
SRAMs.

• DRAMs are always organized with the word length of 1-bit so that they are used
with SIMM module where as SRAMs are organized for many different word lengths.

• DRAMs require many hardware pins so that address lines have be multiplexed
where as it is seldom the case with SRAMs.

• Timing requirements of DRAMs are very complex as compared to the timing
requirements of SRAMs.

• The DRAMs suffer from destructive read out so that each read must be followed
by a write whereas there is no such problem with SRAMs.

• The DRAM requires extra hardware circuitry, called DRAM Controllers, for its
proper operation where as SRAM does not need such supports.

• DRAMs are slower than the SRAMs due to destructive read out, address multiplexing
and mainly due to refresh requirements.

• Future expansion of DRAM is easier as they are used with SIMM module in which
case expansion involves replacement of board on the slot of main board. Needless
to mention that using SIMM further increases the storage capacity than achieved
by using a single DRAM chip.

• The DRAM cells offer lesser power consumption compared to either BJT or MOS
SRAM cell.

At this point we strongly recommend the readers to find out similar comparison between
other memory devices like BJT & MOS SRAMs, BJT & MOS ROMs & PROMs etc.

492 Switching Theory

11.4.15 Memory System Design
An important aspect of study of memories to design a memory system that suits for a

particular application. A design engineer is suppose to design a memory system that meets
number of required storage words and the word length with the available resources. The
memory system design main involves the two things

• The Address Space Allocation or Address decoding.

• Obtaining the required storage capacity with a given word length.

The first point requires the understanding of address range available with memory IC
and that with the available with processing system. The second problem mainly requires
different types of connection that can be made with the memory ICs to achieve the required
capacity and word length. We access these steps one by one in following subsections to
elaborate the idea. It has been our experience that students are often feared about how to
determine number of address lines, how to find out address ranges and how it is written.
Thus we first address this issue in order to make the newcomers feel easy.

11.4.15.1 Determining Address Lines & Address Range
To determine the number of address lines in a memory IC we first see its organization

(e.g. 1K × 8) to find out the number of storage locations or words in that memory. For
example in 1K × 8 memory 1K=1024 storage locations or words are present. Now by using
equation 2 we determine the number of address lines in a memory. We have equation 2 as

2n > Number of Storage Locations

Where n = number of address lines and is always integer.

Address A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address

bits In Hex

Starting 0 0 0 0 0 0 0 0 0 0 000H
Address

Ending 1 1 1 1 1 1 1 1 1 1 3FFH
Address

Fig. 11.36 Address Bit Map or Address Range for 1K × 8 Memory

So for 1K × 8 memory 2n > 1K = 1024 results in n = 10. i.e. it have 10 address lines.
The address bits are written as A0, A1… An–1 i.e., for n = 10 they are labeled as A0, A1… A9.
To determine the address range we use the fact that addresses are specified as binary bit and
each binary bit can have max change from 0 to 1. Thus to determine range we consider this
max change for address bits at a time as shown in Fig. 11.36 for 1K × 8 memory. While
writing the memory addresses the usual way is to write in hexadecimal instead of binary for
the sake of easiness.

Thus the address ranges from 000H to 3FFH for a 1K × 8 memory. The bit wise
representation of memory address as shown in Fig. 11.36 is called as Address Bit Map. We
will use such type of bit maps in designing problems. From the above we can conclude that
adding 3FFH to the initial address will give the last address of 1K memory locations. The
same can be said alternately, that by changing the 10 address bits we traverse through any
of the 1K address location.

Memory Fundamentals 493

11.4.15.2 Parallel and Series Connections of Memory
In this subsection we are concerned with how connect more than one memory ICs to get

the desired word length and desired number of address location. In general we can connect
the memory in three different configurations. They are

• Parallel Connection

• Series Connection

• Series-Parallel Connection

The parallel connection of memory ICs are used when we need to increase the word
length while keeping the address location same. In this case the address lines and control
signals are tied together by forming wired-OR and data lines from all the ICs are taken at
the output to provide desired word length. Let we have two ICs organized as 1K × 4 and we
need a memory of 1K × 8. A Parallel connection shown in Fig. 11.37 can solve this issue.

RD

W R

CS 1 K × 4
RAM

D –D0 4

A –A0 9

RD

W R

CS 1 K × 4
RAM

D –D0 4

A –A0 9

8-bit
Da ta Bus

4-bit
Da ta Bus

10-b it Address B us
10

4

From
Address
G eneration
Log ic

From
Control
Log ic

A –A0 9

4 4 -b it D ata Bus

Fig. 11.37 Parallel connection of 1024 × 4 RAMS to obtain 1024 × 8 RAM

Observe the figure carefully and notice that 4-bit data bus from two ICs are taken at the
output in parallel giving a total of 8-bit data bus, that why it is called parallel connection. Any
group of the four bits can be defined least significant or most significant.

1 : 2
L ine

Decoder

S0

EN

A1 0

11 Address
Bit

th

CS

RAM 2
1K × 8
RAM

A –A0 9

Y1

Y0

8-bit Da ta Bus

8

8

RD W R

CS
RD W R

1K × 8
RAM

RAM 1

A –A0 9 D –D0 7

10-b it Address Bus

A –A0 9

10

Se lect
inpu t

Fig. 11.38 (a) Series connection of two 1K × 8 RAMs to obtain 2K × 8 RAM

494 Switching Theory

The series connection of memory ICs are used when we need to increase the address
location while keeping the word length same. In this case the address lines, data lines and
control signals are all tied together by forming wired-OR. A decoder can then be used to select
one of the ICs. This provides the desired numbers of address locations. Let we have two ICs
organized as 1K × 8 and we need a memory of 2K × 8. A series connection shown in
Fig. 11.38(a) can solve this issue.

Since there are two ICs of 1K locations each, when combined together they can give 2K
locations. But having 2K locations requires 11-address bits. The select input of 2:1 line
decoder provides this 11th address bit as labeled in figure. When this bit 0 the upper RAM
is selected and when 1 lower RAM is selected. Thus 2K locations can be accessed. The address
bit map for this connection is shown in Fig. 11.38(b). Observe how the address is changing
for the two values of A10 which is connected to the select input of decoder. Thus we can say
that we have address bank of 2K locations. As clearly seen by the bit map 1st 1K addresses
of this bank are assigned to the upper RAM and 2nd 1K are assigned to the lower RAM. Since
the two RAMs are connected one after another they are called to be series connected.

Address A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address

bits In Hex

Starting 0 0 0 0 0 0 0 0 0 0 0 000H
Address

Ending 0 1 1 1 1 1 1 1 1 1 1 3FFH
Address

Starting 1 0 0 0 0 0 0 0 0 0 0 400H
Address

Ending 1 1 1 1 1 1 1 1 1 1 1 7FFH
Address

Fig. 11.38 (b) Address Bit Map or Address Range for 1K × 8 Memory

The series-parallel connection of memory ICs are used when we need to increase both
the word length and the number of address locations. This is the combination of first two
connections. If readers are through with the first two configurations this can easily be
understood. For this type of connection we can consider the connection shown in figure
11.38(a) in which each of the 1K × 8 ICs are derived from Fig. 11.37. Readers are instructed
to draw the connections to obtain a memory of 2K × 8 by using the 4-ICs of 1K × 4 on the
basis of Fig. 11.37 and 11.38(a). In this fashion the desired word length and desired number
of storage locations can be obtained. In fact it is the connection often required.

11.4.15.3 Address Space Allocation—The Address Decoding
The address-decoding problem is associated with what addresses to be assigned to which

memory devices from entire address space available, and what exactly should be the scheme
to assign it. In nutshell it is the problem of memory address allocation. In a general
microprocessor system the number of address lines are large allowing it to access large
amount of memory. Where as the memory ICs available may be of smaller storage capacities
i.e. they can process smaller number of address lines. Now the problem could be which of the
ICs are to be given which address. Infact the problem can be solved by careful analysis of
requirement and applying the appropriate decoding scheme.

Memory Fundamentals 495

There are two types of decoding schemes, Exhaustive Decoding and Partial Decoding. In
the exhaustive or fully decoded system all the address lines of processor must be decoded. In
case of partial decoding scheme all the address lines of processor are not decoded. But in this
case the addresses may not be unique and more than one address can be assigned to same
memory word.

To understand it let us consider a residential colony in which house numbers can be a
4-digit numbers and any of the house can be allotted a number between 0000 to 9999. Now
suppose only the numbers from 1000 to 2000 are allotted to houses. In this case saying house
numbers 500 or even 3500 or 4500 is same as 1500 as we know that only house numbers are
one from 1000 to 2000. Saying just 500 as house number means Partial Decoding in case of
memory address decoding. Where as saying house number 1500 is Exhaustive Decoding. Now
consider the case when allotted house numbers are 1000 to 3000 then saying just 500 to
mention same house creates trouble that weather it refers to 1500 or 2500 as both are
present. In memories it means two memory ICs are assigned same address. So both the ICs
will start working at a time causing BUS Contention to occur. BUS Contention is a situation
in which more than one device attempts to drive the system bus simultaneously in which case
busses may be damaged. To avoid all such problems we must give complete house number
i.e. 1500 to refer to that house. Thus before saying 500 we must ensure that there is no other
house number whose last 3 digits are 500. The same is ensured in memory systems too, to
avoid bus contention. Thus irrespective of the decoding schemes the goal of design is to assign
unambiguous (or unique) addresses to memory devices. The way two schemes are realized are
explained in next subsection.

11.4.15.4 Formation of Memory System
In this section we are concerned with how to deal with the requirements of different

systems. Here we must analyze the different requirement given to us and check the resources
available and then take the appropriate steps to solve the problem. Infact a design engineer
is supposed to come with the appropriate access circuitry for the memory modules given to
him/her in order to obtain the required system. It has our best observation and reading that
it is far better if we consider the problems to illustrate the ideas to students. So we start
with the example in this subsection to consider the different situation and its fulfillment.
Note that we illustrate many important facts and make the important conclusions through
these examples only. We first start with the assumption that processing system can be a
microprocessor or any other system capable of providing the required number address bits
and control signals required for memory. Our job is mainly to find out the decoding circuitry
for the circuits.

Example 1. It is required to obtain a memory system of 2K × 8 bits for a certain
application. Given that memory ICs available are 1K × 8. Obtain the desired system.

Solution. By reading the problem it is revealed that we have already solved this problem
even before saying any thing!!!!. If surprised see Fig. 11.38-A, it is same as required by
problem. Sit comfortably now because we are already through with it. For the reference we
reproduce the Fig. 11.38-A and 11.38-B again.

It’s now time to list out the different steps in order to solve these types of problems.
Carefully read all steps we take to solve this problem again.

1. > Determine the total number of address lines required for the memory system to
be designed.

496 Switching Theory

Given total requirement is 2K × 8 means we need a total of 11 address lines
because 211 = 2048 = 2K.

2. > Determine the number of address bits available with the given memory ICs.

Given ICs are 1K × 8 means we have 10 address lines available with the individual
ICs because 210 = 1024 = 1K.

3. > Determine the number of bits available for the chip decoder.

Since total required address bits are 11 and individual memories can handle 10-bits
of address, we are left with 1 address bit. This extra bit can be feeded to the decoder
as shown in the Fig. 11.39 (a).

4. > Draw the Address Bit Map for Entire Memory Space and indicate change in bits
for individual memory ICs. This is needed to assign particular address to individual
ICs. The same is shown Fig. 11.39 (b).

1 : 2
L ine

Decoder

S0

EN

A1 0

11 Address
Bit

th

CS

RAM 2
1K × 8
RAM

A –A0 9

Y1

Y0

8-bit Da ta Bus

8

8

RD W R

CS
RD W R

1K × 8
RAM

RAM 1

A –A0 9 D –D0 7

10-b it Address Bus

A –A0 9

10

Se lect
inpu t

Fig. 11.39 (a) Series connection of two 1K × 8 RAMs to obtain 2K × 8 RAM

Fig. 11.39 (b) Address Bit Map for Fig. 11.39(a) of exampel 1

Observe that bit A10 does not change anywhere within the address rage for RAM1 and
remains 0 always. The same is true for and RAM2 where bit A10 1 always. This
justifies the step 3 to take the left over bits for decoder. As one can see that the
decoder bit selects how much memory address (1K in this case) can be selected by each
output of the decoder. Infact this is the main purpose of drawing address bit maps.

5. > Draw the Connection diagram for the memory ICs as per Address Bit Map. This
is the one we have done already in Fig. 11.39(a). But this done for this example
only. We will draw the connection diagram in this step only for the other examples.

Memory Fundamentals 497

6. > Draw the Address Map. In step we diagrammatically represents the entire memory
address space and show which address is assigned to which IC as shown in Fig. 11.39(c).

Fig. 11.39 (c) Address Map for figure 11.39-A

From this address map we also conclude that adding 7FFH to the initial address will give
the last address of 2K memory locations.

If you are waiting for step 7, we are sorry to say that problem is over and you have given
the complete solution to the problem posed to you. We advise the readers to go to the
beginning of this example and carefully read it again, as these are the findings we would be
using in following examples.

Example 2. Given two 2K × 8 ROM ICs and two 2K × 8 RAM ICs obtain a memory
system of 8K × 8 bits.

Solution. We start step by step as defined by the previous problem.
1. > Given total requirement is 8K × 8 means we need a total of 13 address lines

because 213 = 8192 = 8K.
2. > Given ICs are 2K X 8 means we have 11 address lines available with the individual

ICs because 211 = 2048 = 2K.
3. > Since total required address bits are 13 and individual memories can handle 11-

bits of address, we are left with 2-address bit, which can be feeded to the decoder.
4. > Draw the Address Bit Map for Entire Memory Space and indicate change in bits

for individual memory ICs. This is needed to assign particular address to individual
ICs. The same is shown in Fig. 11.40(a).

Fig. 11.40 (a) Address Bit-Map for 8K × 8 Memory System of example 2

498 Switching Theory

It is clear from the address bit map that each decoder output (selected by A12 and
A11 bits) selects one 2K-memory address space.

5. > Connection diagram for the memory ICs is shown in Fig. 11.40 (b).

6. > The Address Map is shown in Fig. 11.40 (c).

2 : 4
Decoder

EN

A1 2 A11

Se lect
Inpu t

2K × 8
RO M

RO M 1

CS

A –A0 1 0

11

8

2K × 8
RAM

RAM 2

CS

A –A0 1 0

11

8

2K × 8
RAM

RAM 1

CS

A –A0 1 0

11

8

2K × 8
RAM

RAM 2

CS

A –A0 1 0

11

8

Y0

Y1

Y2

Y3

8

D –D0 7

A –A0 1 0
11-bit Address

Bus

11

8-bit
Da ta bus

S 1 S 0

Fig. 11.40 (b) Formation of 8KB memory system using RAMS and ROMS

From this address map we also conclude that adding 1FFFH to the initial address will
give the last address of 8K memory locations. Alternately we can say that we must change
13 address bits at a time to traverse through 8K memory locations.

Memory Fundamentals 499

Fig. 11.40 (c) Address Map for Fig. 11.40(b).

Example 3. Given two 2K × 8 ROM ICs and two 2K × 8 RAM ICs obtain a memory
system of 8K × 8 bits. It is required that 1st 2K address must be assigned to a ROM, 2nd 2K
address to a RAM, 3rd 2K address to a ROM, and the 4th 2K address to a RAM.

Solution. Read the statement once again it is essentially the same as previous problem,
but the only difference is now it specifies the address where the particular memory devices
are to be connected.

We know that for 8K address we need 13 address lines and with the arrangement
shown in Fig 11.40B it reveals that we can access four 2K memory segments whose addresses
can be obtained as shown in bit map of Fig. 11.40(a).

Fig. 11.41 (a) Address Bit-Map for 8K × 8 Memory System of example 3

Now the only thing we need to do is to connect the device at correct outputs of the
decoder, which can be obtained from bit map shown in Fig. 11.41(a). Go through the details
of this map carefully.

The similar connection diagram and memory address map would also appear but with the
ICs changed to positions required by problem. Fig. 11.41(b) and 11.41(c) shows this.

500 Switching Theory

2 : 4
Decoder

EN

A1 2 A11

Se lect
Inpu t

2K × 8
RO M 1

RO M

CS

A –A0 1 0

11

8

RAM 1
2K × 8

RAM

CS

A –A0 1 0

11

8

2K × 8

RO M

CS

A –A0 1 0

11

8

RAM 2
2K × 8

RAM

CS

A –A0 1 0

11

8

Y0

Y1

Y2

Y3

8

D –D0 7

A –A0 1 0
11-bit Address

Bus

11

S1 S0

8-bit
Da ta Bus

RO M 2

Fig. 11.41 (b) Formation of 8KB memorysystem using RAMS and ROMS

Example 4. Given two 2K × 8 ROM ICs and two 2K × 8 RAM ICs obtain a memory
system of 8K X 8. It is required that two ROMs must be connected to addresses beginning from
0000H and 1000H. Also the RAMs should be connected to begin from 0800H and 1800H.

Solution. Example 4 is just another way or giving statement for problem example 3. But
we will consider it separately to understand that what should be the way to solve these types
of issues.

Memory Fundamentals 501

RO M 1

RO M 1

RO M 2

RO M 2

1FFFH

0FFFH
1800H

0FFF
H

1000
H

07FF
H

0800
H

0000
H

0000
H

1FFFH

8K ADDR ESS
SPACE

Fig. 11.41 (c) Address Map for Fig. 11.41(b)

Except the step 4 i.e., generating address bit map, all other steps are exactly same so
that we consider only address bit map that too in much simplified way. Recall that in example
1 we concluded that adding 7FFH to the initial address would give the last address of 2K
memory locations. We use this to generate the bit map as given ICs are 2K × 8.

For ROMs: given that a ROM should start from 0000H and 1000H

First when connected at 0000H:

Last address = 0000H + 07FFH = 07FFH

So the address range is 0000H to 07FFH

Second when connected at 1000H:

Last address = 1000H + 07FFH = 17FFH

So the address range is 1000H to 17FFH

For RAMs: in the similar way we get for RAMs

First when connected at 0800H:

Address range is 0800H to 0FFFH

Second when connected at 1800H:

Address range is 1800H to 1FFFH

Compare these addresses with those shown in the bit map of Fig. 11.41 (a), you reached
the same map. Thus the entire Fig. 11.41 can redrawn for example 4.

It is interesting to see that instead of adding 07FF if we would have changed the least
11 significant address bits (as 211 = 2K) of initial address to 1 even in that case also we could
have reached the same point. Infact this is what we have done till example 3. Either the way
we proceed it is same because we found the number 07FFH from the fact that the highest
hexadecimal number that can be written by 11 address bits is 07FFH. Many a times you will
find that adding a number to initial address is easier because it is less time consuming than
case of drawing complete bit map. But this short hand is useful only when you are through
with concept and saying a hexadecimal number displays its bit pattern in your mind.

502 Switching Theory

Shadowing or Address Overlapping address overlapping means assigning more than
one address space to the memory device. It is the situation similar with a student who has
his roll number and university enrolment number unique to him. So that when called by
enrolment number or by roll number the same student will respond and none of the other
students respond. An example will illustrate this best.

Example 5. A system needs a 4K × 8 memory system. But the requirement is such that
a single 2K × 8 RAM IC be used and the two consecutive 2K memory addresses should be
overlapped to this device only.

Solution. We know that for 4K system we will have 12 address lines. The 2K devices
can process only 11 address bits thus the left over is 1-bit that can be used to access two 2K
segments. By address overlapping we mean that both the segments would be referenced for
same device. This is shown in Fig. 11.42.

2 : 1
Decoder

EN

X

Select
Inpu t

Don’t
Care

W R
RD

CS

2K × 8
RAM

A –A0 1 0

D –D0 7

11-bit Address bus

Data bus

S 0

8

Fig. 11.42 Illustration of memory address overlapping with 2K × 8IC

Notice the use of AND gate used to generate chip select for memory device. As shown,
upon activation decoder outputs goes low so weather activated output is Y0 or Y1 AND gate
out output is always low. This means memory is selected irrespective of the status of select
input of decoder.

If we draw (readers are instructed to draw) the bit map for 4K as two 2K address block
we see that first 2K block is 000 to 7FFH and second 2K block is 800H to FFFH. With the
configuration shown in Fig. 11.42 both the address blocks refers to the same IC thus address
blocks are overlapped to each other and hence the name address overlapping. In the similar
way we can overlap any two equal sized address blocks present in entire address map (or
space).

We now turn our attention to exhaustive and partially decoded memory system. For
illustration purpose we again consider the problem posed in example 2. Because write now
we are very much through with it and once we understand the idea we can apply it to design.
Read the problem statement carefully as it is going to create the difference.

Example 6. It is required to obtain an 8K × 8 memory system for 8085 microprocessor
system that has an addressing capability of 64K locations. Given memories are 2K × 8 ROM
ICs and 2K × 8 RAM ICs. Obtain the exhaustive or fully decoded as well as partially decoded
system.

Solution. We first determine the number of address lines this processor has. 64K means
216 i.e., the processor has 16 address bits where as the requirement for memory is just

Memory Fundamentals 503

13-bits, see step 1 in example 2. This means 3 address bits of processor will remain unused
(or unchanged). This is shown by the address bit maps in Fig. 11.43, which now contains 16
bits instead of 13.

For exhaustive decoding: As stated for this scheme we must decode all the address bits
of microprocessor. The address bit map for this scheme is shown in Fig. 11.43(a). It shows that
bit A13 to bit A15 are unchanged for entire 8K-address space. Since in this scheme we must
decode all address bits, we can use these 3-bits to generate EN signal for Decoder which can
also be used enable or disable the memory system by enabling/disabling decoder.

Fig. 11.43(a) Address Bit-Map for exhaustive decoded 8K × 8 Memory System of example 6

The diagram for decoder along with enable generation is shown in Fig. 11.43 (b). The figure
indicates which decoder output to be connected to which IC. Infact connections will be same as
Fig. 11.40 (b) and the decoder of Fig. 11.43 (b) will replace decoder of Fig. 11.40 (b).

EN

A1 2 A11

Se lect
Inpu t

S1 S0

A1 5
A1 4
A1 3

To R OM 1

To R OM 2

To R AM 1

To R AM 2

Fig. 11.43 (b) Exhaustive decoded system for example 6.

Notice the use of OR gate. Output of OR gate is low only when all its inputs are low
otherwise high. Thus saying an address higher than 1FFFH will not be responded by this
system. If we say 8000H it means bit A15 goes high and output of OR gate goes high thus
disabling the decoder and consequently the entire memory system.

For partial decoding: Here the idea is not to use all the address bits of processor for
address decoding. As the 3 most significant address bits A15, A14, A13 are unchanged we can
say that they are not used i.e. don’t care. So it hardly matters if we use them for decoding
or not. The address bit map shown in Fig. 11.44 (a) show this.

504 Switching Theory

Fig. 11.44 (a) Address Bit-Map for partially decoded 8K × 8 Memory System of example 6

This means irrespective of the status of A15, A14, and A13 the memory system can be
used. Thus Fig. 11.40 (b) is direct implementation of partially decoded system, as it does not
include these bits.

EN

A1 2 A11

To R O M 1

To R O M 2

To R AM 1

To R AM 2

A1 5

Fig. 11.44 (b) Partially decoded system for example 6.

A variation of implementation is shown in Fig. 11.44-B, which uses A15 to enable the
address decoder. Since A14 and A13 are not used it is still a partially decoded system.

Example 7. It is required to obtain an 8K × 8 memory system for 8085 microprocessor
system that has an addressing capability of 64K locations. Given memories are 2K × 8 ROM
ICs and 2K × 8 RAM ICs. Obtain the exhaustive decoded system, which maps the 8K-memory
system to begin from 8000H.

Solution. It essentially the same problem as was done in example 6. The change now
is to assign the particular address. For this already we have seen example 4. So we do not
go to complete design rather we just draw the bit-map and decoder circuit required by stating
the net outcomes of detailed design.

The only change in bit map of Fig. 11.45 (a) as compared to that of Fig. 11.43 (a) is just the
status of A15, which is set to 1 now. It is because 8K system has to begin from 8000H. No other
change can be observed in this bit map. So we connect A15 through not gate to the input of OR
gate to generate the enable signal for this address range. This is shown in Fig. 11.44 (b).

The readers are directed draw an address map for this design as was drawn in
Fig. 11.40(c) of example 2.

Memory Fundamentals 505

Fig. 11.45(a) Address Bit-Map for exhaustibe decoded 8K × 8 Memory System of example 7

EN

A1 2 A11

Se lect
Inpu t

S1 S0

A1 5
A1 4
A1 3

To R OM 1

To R OM 2

To R AM 1

To R AM 2

Fig. 11.45 (b) Exhaustive Decoded system of Example 7

Although all the above examples does not contain all types design variation we hope that
it will serve as the best building block to understand the problem of memory bank formation.
Notice that same system was taken to illustrate the different ideas because once we are
familiar with a system then it is easy to view it in different situations. In general the
problems define IC numbers not the organization (e.g., 2K × 8) of memories for which user
must know the address bus width and data bus width. For this reason readers are advised
to prepare a list of ICs and memorize the bus width and control signals.

11.5 EXERCISES
1. What is meant by primary memory, secondary memory and mass storage devices?

2. Define the terms storage capacity, memory word, storage location, and word length.

3. Determine the storage capacity of the memories shown in Fig. 11.46.

RD

W R

CS

Address Data

16

()a

RD

W R

CS

Address Data

16

()b

208

Fig. 11.46 Memories for problem 3

506 Switching Theory

4. Define the terms (i) Access Time (ii) Cycle time (iii) Bandwidth (iv) Volatile (v)
Dynamic (vi) Static

5. Explain organization of tracks in magnetic memories with the help of figure ?

6. What are optical memories ?

7. Explain basic semiconductor memory organization with the help of figure.

8. With the help of figure explain the memory cell addressing.

9. In the Fig. 8-b how memory cell “Cell 3-2” is accessed ?

10. Explain the memory cell organization shown in Fig. 9. How a particular cell can be
selected in this case ?

11. A memory has cell array of 114 × 114, what will be the required number of lines
of word length is (a) 2-bits (b) 4-bits (c) 8-bits.

12. Explain the sequence of operation to be performed to write a data into memory ?

13. A memory has access time of 50 n sec. It has an additional delay called precharge
time of 20 n sec. Find out the access rate and bandwidth of this unit ?

14. Explain how a multiplexer can be used as ROM ?

15. What are Mask Programmed ROM ? How logic 1s logic 0 are stored in such ROMs.

16. Explain the MOS PROMS ? What are their advantages over Bipolar PROMs ?

17. Explain the basic structure of a EPROM cell ? Why they are so popular ?

18. How an EPROM can be reprogrammed ?

19. Explaining the basic logic structure of SRAM ?

20. With the help of figure explain the operation of a bipolar SRAM cell and MOS SRAM
cell ?

21. What is Dynamic RAM ? Why they are most widely used ?

22. With the help of figure explain the basic DRAM storage cell ?

23. Draw the organization of a DRAM ? How a particular cell can be read or write in
this organization ?

24. What are DRAM controllers ? Why they are needed for operation of DRAM ?

25. What is partial decoding and exhausitive decoding ?

26. For a 16 Address-bit processor systems it is required to form 32 KB memory system
using one 2764, Four 4016 and two 6264 memory ICs. Obtain the decoding circuitry
and draw the address map. Use exhaustive decoding.

27. A system needs to create 16KB of memory using 6224 ICs. It is required that the
2nd and 3rd 8K address should overlap. Obtain the decoding circuitry and draw the
address maps.

28. For a 16 address bit processor it is required to obtain 16KB memory system using
IC 6232. Use partial decoding schemes and obtain the decoding circuitry and address
maps ?

Memory Fundamentals 507

REFERENCES
1. A.K. Singh, Manish Tiwari, Digital Principles Function of Circuit Design and

Application, New Age International Publishers, Delhi, 2006.

2. H. Taub, D. Schilling, Digital Integrated Electronics, McGraw-Hill, Koga Kusha,
1997.

3. A.S. Sedra, K.C. Smith, Microelectronics Circuits, 4th ed, Oxford University Press,
New York, 1998.

4. J. Millman, H. Taub, Pulse Digital and Switching Waveforms, Mc-Graw Hill,
Singapore.

5. M.M. Mano, Digital Design, 2nd ed, Prentice-Hall of India, 1996.

6. R.L. Tokheim, Digital Electronics: Principles and Applications, 6th ed, Tata McGraw-
Hill, New Delhi 2004.

7. J. Millman, C.C Halkias, Integrated Electronics: Analog and Digital Circuits and
Systems, Tata McGraw-Hill, New Delhi, 1994.

8. A.P. Malvino, D.P. Leach, Digital Principles and Applications, 4th ed, Tata McGraw
Hill, New Delhi, 1991.

9. R.P. Jain, Modern Digital Electronics, Tata McGraw-Hill, New Delhi, 1992.

10. Virendra Kumar, Digital Technology; Principles and Practice, New Age, International
Publishers, Delhi.

11. J.P. Hayes, Computer Architecture and Organization, 2nd ed, McGraw-Hill, Singapore,
1988.

12. V.C. Hamacher, Z.C. Vranesic, S.G. Zaky, Computer Organization, 4th ed, McGraw-
Hill, 1996.

13. Gopalan, Introduction to Digital Microelectronics Circuits, Tata McGraw Hill, 1998.

14. P.K. Lala, Digital System Design using Programmable Logic Devices, BS Publication,
Hyderabad, 2003.

15. J.M. Rabey, Digital Intergrated Circuits: A Design Perspective.

16. Charles H. Roth, Jr., Fundamentals of Logic Design, 4th ed, Jaico Publishing House,
2003.

17. ZVI Kohavi, Switching and Finite Automata Theroy, 12th ed, Tata McGraw Hill,
1978.

508 Switching Theory

508

APPENDIX A

INTEGRATED CIRCUITS FABRICATION FUNDAMENTALS
In 1948, Schokley, Baardeen and Brattain, invented the transistor device. This device

was not only cheap, more reliable, less power consuming, but side by side very small in size
as compared to the vacuum tubes prevailed in those days. As the size of the active component
(i.e., those components, which produces gain, viz., vacuum-tube amplifier etc) decreases, so
the passive components (viz., resistors, capacitors, coils etc.) also got very much reduced in
size, making the complete electronic circuitry very small. The development of “Printed
Circuit Boards” (PCBs), further reduced size of electronic equipments as a whole, by eliminating
bulky wiring and tie-points.

In early 1960s, a new field called as Micro Electronics was developed, to meet the
requirements of Military, which wanted to reduce the size of its electronics equipments, to about
1/10th of its existing one. This led to the development of micro-electronic circuits, later called
integrated Circuits (ICs), which were so small that the fabrication was done under microscopes.

An IC can be described as a complete microelectronic-circuit in which both the active
and passive components are fabricated on a extremely thin chip of silicon (called as substrate),
in general.

 ICs are produced by the same processes, as are used for making individual diodes,
transistors etc. In such circuits, different components are isolated from one another by
isolation diffusion, within the crystal-chip, and are inter-connected by an aluminum layer,
that serves as wires. J.K. Kilby was the first to develop (in 1958) such an IC—a single mono-
lithic silicon chip, with both the active and passive components. He was soon followed by
Robert Noyce, whose IC included the interconnection, on the chip itself. It had about 10
individual components, the chip was 3 mm (0.12 inch) square. The development of Large-
Scale Integration (LSI) during the early 1970s made it possible to pack thousands of transistors
and other components on a chip of roughly the same size. This technology gave rise to the
Micro-Processor on IC, that contained all the arithmetic logic and control circuitry needed
to carryout the functions of a digital computer’s Central Processing Unit (CPU). Very Large
Scale Integration (VLSI), developed during the 1980 has vastly increased the circuit-density
of microprocessors, as well as of “memory” and support chips. This technology has yield, 30,
00,000 transistors on a chip of less than 4 cm chip.

ICs are of several types: Mono-lithic ICs, also called semi-conductor or silicon integrated
circuits. These are formed by the superposition of layers of materials, in various patterns,

APPENDICES

Appendix 509

to form a single, three-dimensional block of circuitry. The circuit elements are formed by the
particular patterns and topology of conducting, semi-conducting, and insulating layers, which
have been used in building up the structure, The silicon “chip” is also called as Wafer (or
Substrate). Thus all the components are automatically part of the same chip. Active components
like diodes, transistors, as well as passive ones like resistors, capacitors etc., are all fabricated
at appropriate spots in the wafer, using epitaxial diffusion-technology. These types of ICs are in
wide use because for mass-production, this (monolithic) process has proved to be more economical.

The other type of ICs is called as “Thick & Thin Film IC.” These IC’s are not formed
within a silicon wafer, but on the surface of insulating substrate, such as glass ceramic
material. Only passive components (resistors, capacitors) are formed through thick or thin
film techniques, on the insulating surface. The active components (transistors, diodes) are
added externally as discrete elements, to complete a functional circuit. These discrete active
components, in their turn, are generally produced by using the monolithic process. To
produce resistors and conductors using materials of different resistivity, the width and the
thickness of the film is varied on the insulating surface. Capacitors are produced by switching
an insulating oxide film between two conducting films. This deposition is done through a
mask. Small Inductors can be made by depositing a spiral formation of the film. Another
method is called “Cathode Sputtering”, in which atoms from a cathode made of the desired
film material, are deposited on the substrate, which is located between the cathode and
anode, However, both these (i.e., vacuum evaporation and cathode sputtering), methods
come under thin film technology. In thick-film ICs, silk-screen printing technique is used.
These screens are made of fine stainless steel wire meshes and the “Inks” are pastes (of
pulverized glass and aluminium) which have conductive, resistive or dielectric properties.
After printing, the circuits, are high-temperature fired in a furnace, to fuse the films to the
insulating substrate (glass or ceramic). Here also, active components are added externally,
as discrete components.

The third type of ICs is called Hybrid or Multi-Chip ICs, Here a number of chips are
interconnected by a combination of film and monolithic IC techniques. In such ICs, active
components are first formed within a silicon wafer (using monolithic technique), which is
later covered with an insulating layer (such as SiO2).Then they use the film technology to
form the passive components on the SiO2 surface. Connections are then made for the film
to the monolithic structure through Windows cut to the SiO2 layer.

Of these three types of ICs, monolithic types are most common with the advantage of lowest
cost and highest reliability. But in these ICs (i) isolation in between the components is poorers,
(ii) inductors cannot be fabricated alone, (iii) their range and a flexibility in design is very limited,
because film ICs are made on an insulating surface, inter-components isolation is better. Further,
because discrete active components are connected externally, it gives more flexibility in circuit
design. The multi-chip ICs are the costliest and least reliable of the three types.

ICs may also be classified on the basis of their function. The two most important types
are (i) Linear and (ii) Digital. Linear ICs are also called Analog ICs because their inputs and
outputs can take on a continuous range of values, and the outputs are generally proportional
to inputs (linearly). Linear IC’s are quickly replacing their discrete circuit components in
many applications, making the new unit more reliable, because so many external connections
(major source of circuit failure) are eliminated. The LICs (Linear Integrated Circuits) are
now being used as (1) Operational Amplifiers, (2) Small-signal Amplifiers, (3) Power Amplifiers,
(4) R/F, I/F amplifiers, (5) Microwave Amplifiers, (6) Multipliers, (7) Voltage comparators, (8)
Voltage Regulators etc.

510 Switching Theory

However, about 80% of the IC market has been captured by Digital type of ICs (mostly
the Computer Industry). These are mostly monolithic in construction. Such ICs use input
and output voltages, limited to only two possible levels-low or high, as digitals, signals are
usually binary. Sometimes, these are also called as Switching Circuits. Such ICs include (1)
Logic Gates, (2) Flip Flops, (3) Counter, (4) Clock-chips, (5) Calculator chips, (6) Memory
chips, (7) Micro processors etc. In addition to the various ICs described above, we have
monolithic ICs based on MOSFET structure. These are also processed in the same way as
bipolar ICs, however, their fabrication is much easier as in a single diffusion step, both the
drain and source regions can be formed (compared to 2-4 steps needed in case of BJTs-ICs).
Likewise, there is no need for isolation, technique for the Enhancement MOSFET devices.
Since in their case, the drain and source regions are isolated from each other by a P-N
Junction formed with the N-type substrate. Besides, packing-density of MOS ICs is at least
10 times maximum than that for Bipolar ICs. The MOS resistor occupies less than 1% of the
area, as compared to the one by a conventially diffused resistor. This high packing density
makes MOS ICs especially suited for LSI and VLSI mass productions. Their main disadvantage
is slower operating speed, as compared to Bipolar ICs.

IC FABRICATION TECHNIQUE (STEPS)
The actual process of IC fabrication consists of a number of steps. Which are described

briefly as:

1. WAFER PREPARATION: A Wafer is a thin slice of a semiconductor material die
15-50mm (mostly silicon) either circular or Wafer dimension rectangular in shape.
These wafers are prepared on formed by cutting a P-type silicon bar into very thin
slices (see Fig. A.1). These wafers, after being lapped and polished to micro-finish,
same as the base (or substrate) for hundreds of ICs.

Figure A.1 Wafer Preparation

2. EPITAXIAL GROWIH: An N-type of silicon layer (about 15 µm thick) is grown on
the P-type substrate, by placing the wafer in a furnace at 1200°C and introducing
a gas containing phosphorus (donor impurity). It is in the epitaxial layer, that all
active and passive components of IC are formed. This layer ultimately becomes the
collector for transistors, or on element for a diode or a capacitor.

3. OXIDISATION: A thin layer of silicon dioxide (SiO2) is grown on the N-type layer
by exposing the wafer to an oxygen atmosphere at about 1000°C (Fig. A.2).

N-layer

P-S ubstrate

S iO layer2

Figure A.2 Epitaxial growth and oxidation

Appendix 511

4. PHOTO-LITHOGRAPHIC PROCESS: Here selective etching of SiO2 layer is carried
out with the help of a photographic mask, photo resist and etching solution. Thus,
selective areas of the N-layer became subjected to diffusion.

5. ISOLATION DIFFUSION PROCESS: which divides the layer into N-type Islands
on which active components may be fabricated.

6. BASE AND EMITTER DIFFUSION: After getting the islands formed on the N-type
layer, the P-type base of transistor is now diffused into the N-type layer, which
itself acts as a collector. The sequence of steps is the same as 4 and 5 i.e., by the
use of photo-resists and mask, which creates windows in the SiO2 layer. This is
carried out in a phosphorus (donor impurity) atmosphere. Next, N-type emitter is
diffused into the base, after another photoresist and mask process. No further N-
type diffusion is needed for the resistor, which uses the resistivity of the P-type
metal itself for this purpose. Thus, one N-P-N transistor and one resistor fabricated
simultaneously. (Fig. A.3).

Figure A.3 Fabrication of transistor and resistor

7. PRE-OHMIC ETCH: N+ regions are diffused into the structure to ensure good
metal-ohmic contact. This is done once again by the SiO2 layer, photo resist and
masking process.

8. METALLIZATION: It is done for making inter-connections and provide bonding
pads around the circumference of the chip, for later connection of wires. It is
carried out by evaporating aluminum over the entire surface and then selecting
etching among the aluminum to leave behind the desired Inter-connecting condition
pattern, and bonding pads.

9. CIRCUIT PROBING: In this step, each IC or the wafer is checked electrically for
its proper working. This is done by placing probes on the bonding pads. Faulty
chips are marked,isolated and discarded, after the wafer has ‘scribed’ and broken
down into individual chips.

10. SCRIBING and SEPARATING: After metallisation and test probing, the wafer
is broken down into individual chips, containing the ICs. For this the wafers
are first scribed with a diamond tipped tool and then separated into single
chips.

11. MOUNTING and PACKING: As the individual chip is very small, it is cemented
or soldered to a gold-plated header, through which leads have already been
connected. After this the ICs are thermetically sealed. These can be (a) Top Hat
package, which can accommodate 14 pins at its top. If the cover is of metal, it
provides magnetic shielding to the ICs, which is not possible with ceramic or
plastic top, (b) Flat packages, which are quite cheap and widely used for industrial
and consumer applications, where high temperatures are not met. Ceramic is used

512 Switching Theory

in those cases. Dual-in line (DIL) flat packages are more convenient for circuit
break use then top hat ones, because being flatter, they allow high circuit densities.

12. ENCAPSULATION: After placing a cap over the circuit, sealing is done in an inert
atmosphere. A few of the fabrications and their symbols are given in Fig. A.4. In
(a) we have the resistor, In (b) a capacitor and in (c) a diode and in (d) a transistor.

Figure A.4

ADVANTAGES OF ICs
The ICs are very popular, and being used in various electronic circuits. The astounding

progress in Micro-Electronics, has been because ICs have the following plus points:

(1) Extremely small size

(2) Too little weight

Weight and size are of great importance in military and space applications:

(3) Very much low cost

(4) Extremely high reliability

Because of the absence of soldered connections. IC logic gate has been found to be l0
times more reliable then a vacuum tube logic gate, and too times more reliable then the BJT
logic gate. High reliability indirectly means that ICs work for longer periods without any
trouble-something very desirable, both for military and consumer application.

(5) Low power consumption

(6) Easy replacement

ICs are hardly repaired, because in case of failure, It is more economical to replace
them than to repair.

(7) ICs are ideally suited for small-signal operation, as the various components of a
IC are located very close to each other, In or On as silicon wafer, then chance of
electrical pick up is preferably nil.

Appendix 513

APPENDIX B

DIGITAL ICs
74LS00 4x Two input NAND

74LS01 4x Two input NAND, Open collector

74LS02 4x Two input NOR

74LS03 4x Two input NAND, Open collector

74LS04 6x Inverter (NOT)

74LS05 6x Inverter (NOT), Open collector

74LS06 6x Inverter (NOT), High voltage Open collector

74LS07 6x Buffer (NO-OP), High voltage Open collector

74LS08 4x Two input AND

74LS09 4x Two input AND, Open collector

74LS10 3x Three input NAND

74LS11 3x Three input AND

74LS12 3x Three input NAND, Open collector

74LS13 2x Four input, Schmitt Trigger NAND

74LS14 6x Inverter (NOT), Schmitt Trigger

74LS15 3x Three input AND, Open collector

74LS16 6x Inverter (NOT), High voltage Open collector

74LS17N 6x Buffer (NO-OP), High voltage Open collector

74LS19 6x Inverter (NOT), Schmitt Trigger

74LS20 2x Four input NAND

74LS21 2x Four input AND

74LS22 2x Four input NAND, Open collector

7423 2x Four input NOR with Strobe

7425 2x Four input NOR with Strobe

74LS26 4x Two input NAND, High voltage

74LS27 3x Three input NOR

74LS28 4x Two input NOR

74LS30 Eight input NAND

74LS31 6x DELAY (6nS to 48nS)

74LS32 4x Two input OR

74LS33 4x Two input NOR, Open collector

74LS37 4x Two input NAND

74LS38 4x Two input NAND, Open collector

74LS39 4x Two input NAND, Open collector

513

514 Switching Theory

74LS40 4x Two input NAND, Open collector

74LS42 Four-to-Ten (BCD to Decimal) DECODER

74LS45 Four-to-Ten (BCD to Decimal) DECODER, High current

74LS46 BCD to Seven-Segment DECODER, Open Collector, lamp test and leading
zero handling

74LS47 BCD to Seven-Segment DECODER, Open Collector, lamp test and leading
zero handling

74LS48 BCD to Seven-Segment DECODER, lamp test and leading zero handling

74LS49 BCD to Seven-Segment DECODER, Open collector

7450 2x (Two input AND) NOR (Two input AND), expandable

74LS51 (a AND b AND c) NOR (c AND e AND f) plus (g AND h) NOR (i AND
j)

7453 NOR of Four Two input ANDs, expandable

74LS54 NOR of Four Two input ANDs

74LS55 NOR of Two Four input ANDs

74LS56P 3x Frequency divider, 5:1, 5:1, 10:1

74LS57P 3x Frequency divider, 5:1, 6:1, 10:1

74S64 4-3-2-2 AND-OR-INVERT

74S65 4-3-2-2 AND-OR-INVERT

74LS68 2x Four bit BCD decimal COUNTER

74LS69 2x Four bit binary COUNTER

7470 1x gated JK FLIPFLOP with preset and clear

7472 1x gated JK FLIPFLOP with preset and clear

74LS73 2x JK FLIPFLOP with clear

74LS74 2x D LATCH, edge triggered with clear

74LS75 4x D LATCH, gated

74LS76A 2x JK FLIPFLOP with preset and clear

74LS77 4x D LATCH, gated

74LS78A 2x JK FLIPFLOP with preset and clear

74LS83 Four bit binary ADDER

74LS85 Four bit binary COMPARATOR

74LS86 4x Two input XOR (exclusive or)

74LS90 Four bit BCD decimal COUNTER

74LS91 Eight bit SHIFT register

74LS92 Four bit divide-by-twelve COUNTER

74LS93 Four bit binary COUNTER

74LS94 Four bit SHIFT register

74LS95B Four bit parallel access SHIFT register

Appendix 515

74LS96 Five bit SHIFT register

74LS107A 2x JK FLIPFLOP with clear

74LS109A 2x JK FLIPFLOP, edge triggered, with preset and clear

74LS112A 2x JK FLIPFLOP, edge triggered, with preset and clear

74LS114A 2x JK FLIPFLOP, edge triggered, with preset

74LS116 2x Four bit LATCH with clear

74121 Monostable Multivibrator

74LS122 Retriggerable Monostable Multivibrator

74LS123 Retriggerable Monostable Multivibrator

74S124 2x Clock Generator or Voltage Controlled Oscillator

74LS125 4x Buffer (NO-OP), (low gate) Tri-state

74LS126 4x Buffer (NO-OP), (high gate) Tri-state

74LS130 Retriggerable Monostable Multivibrator

74128 4x Two input NOR, Line driver

74LS132 4x Two input NAND, Schmitt trigger

74S133 Thirteen input NAND

74S134 Twelve input NAND, Tri-state

74S135 4x Two input XOR (exclusive or)

74LS136 4x Two input XOR (exclusive or), Open collector

74LS137 3-8 DECODER (demultiplexer)

74LS138 3-8 DECODER (demultiplexer)

74LS139A 2x 2-4 DECODER (demultiplexer)

74S140 2x Four input NAND, 50 ohm Line Driver

74143 Four bit counter and latch with 7-segment LED driver

74LS145 BCD to Decimal decoder and LED driver

74LS147 10-4 priority ENCODER

74LS148 8-3 gated priority ENCODER

74LS150 16-1 SELECTOR (multiplexer)

74LS151 8-1 SELECTOR (multiplexer)

74LS153 2x 4-1 SELECTOR (multiplexer)

74LS154 4-16 DECODER (demultiplexer)

74LS155A 2x 2-4 DECODER (demultiplexer)

74LS156 2x 2-4 DECODER (demultiplexer)

74LS157 4x 2-1 SELECTOR (multiplexer)

74LS158 4x 2-1 SELECTOR (multiplexer)

74159 4-16 DECODER (demultiplexer), Open collector

74LS160A Four bit synchronous BCD COUNTER with load and asynchronous clear

516 Switching Theory

74LS161A Four bit synchronous binary COUNTER with load and asynchronous
clear

74LS162A Four bit synchronous BCD COUNTER with load and synchronous clear

74LS163A Four bit synchronous binary COUNTER with load and synchronous clear

74LS164 Eight bit parallel out SHIFT register

74LS165 Eight bit parallel in SHIFT register

74LS166A Eight bit parallel in SHIFT register

74LS169A Four bit synchronous binary up-down COUNTER

74LS170 4x4 Register file, Open collector

74LS174 6x D LATCH with clear

74LS175 4x D LATCH with clear and dual outputs

74LS170 Four bit parallel in and out SHIFT register

74LS180 Four bit parity checker

74LS181 Four bit ALU

74LS182 Look-ahead carry generator

74LS183 2x One bit full ADDER

74LS190 Four bit Synchronous up and down COUNTER

74LS191 Four bit Synchronous up and down COUNTER

74LS192 Four bit Synchronous up and down COUNTER

74LS193 Four bit Synchronous up and down COUNTER

74LS194 Four bit parallel in and out bidirectional SHIFT register

74LS195 Four bit parallel in and out SHIFT register

74LS198 Eight bit parallel in and out bidirectional SHIFT register

74LS199 Eight bit parallel in and out bidirectional SHIFT register, JK serial input

74LS221 2x Monostable Multivibrator

74LS240 8x Inverter (NOT), Tri-state
74LS241 8x Buffer (NO-OP), Tri-state
74LS244 8x Buffer (NO-OP), Tri-state Line driver
74LS245 8x Bidirectional Tri-state BUFFER
74LS259 Eight bit addressable LATCH
74LS260 2x Five input NOR
74LS273 8x D FLIPFLOP with clear
74LS279 4x SR LATCH
74LS283 Four bit binary full ADDER
74LS373 8x Transparent (gated) LATCH, Tri-state
74LS374 8x Edge-triggered LATCH, Tri-state
74LS629 Voltage controlled OSCILLATOR

74LS688 Eight bit binary COMPARATOR

Appendix 517

REFERENCES

1. H. Toub, D. Schilling, Digital Integrated Electronics, McGraw-Hill, Koga Kusha,
1997.

2. A.S. Sedra, K.C. Smith, Microelectronics circuits, 4th ed., Oxford University Press,
New York, 1998.

3. J. Millman, H. Taub, Pulse Digital and switching waveforms, Mc Graw-Hill,
Singapore.

4. M.M. Mano, Digital Design, 2nd ed, Prentice-Hall of India, 1996.

5. R.L. Tokheim, Digital Electronics: Principles and Applications, 6th ed., Tata McGraw-
Hill, New Delhi, 2004.

6. J. Millman, C.C. Halkias, Integrated Electronics: Analog and Digital circuits and
systems, Tata McGraw-Hill, New Delhi, 1994.

7. A.P. Malvino, D.P. Leach, Digital Principles and Applications, 4th ed., Tata McGraw-
Hill, New Delhi, 1991.

8. R.P. Jain, Modern Digital Electronics, Tata McGraw-Hill, New Delhi, 1992.

9. Virendra Kumar, Digital Technology; Principles and Practice, New Age International.

10. J.P. Hyes, Computer Architecture and Organization, 2nd ed., McGraw-Hill,
Singapore, 1988.

11. V.C. Hamacher, Z.C. Vranesic, S.G. Zaky, Computer Organization, 4th ed., McGraw-
Hill, 1996.

12. Gopalan, Introduction to Digital Microelectronics CKts/TMH, 1998.

13. P.K. Lala, Digital System Design using Programmable Logic devices, BS Publication,
Hyderabad, 2003.

14. J.M. Rabey, Digital Integrated circuits: A design Perspective.

r', Complement 35

(r . 1)', Complement 35. 36

1', Complement 27,28,29,30, 31, 32,33, 35,
36, 43, 6 1, 62

10'8 Complement 34, 35, 39, 40, 60, 61, 62

2'1 Complement 27, 28, 29, 30, 31, 32, 33, 34,
3&, Qt , 62

.f.-bit M"nit1,lde Comparator 178, 179

9', and 10', Complement 34, 39, 50, 62

g', complement 34, 35, 43, 50, 61, 62

A
Abeorption La", 68

Active pullup output 428, 444

ActivI! re(ion 395, 399,424,430,431 , 432,435

Active V1)ltaJe 395

Adder. 143, 145, 169, 171, 176, 192

Addre .. decoding 205

Algorithmic State Machine 362, 363

Alter. 204 , 208

Aralog 1. 2, 3, 4, 5 , 6, 1

Al\ll iog and Digital Signals 2 , 4 , 5

Analog or ContinuoUII S ignal 3

A""lo, ·to-digital convel'8ion 7

AND Gate 71 , 79, 80, 84, 85,86, 90,92. $4, ",
96, 97,98, 99, 100, 104, 105, 106, 108, 109

AntifuIM 210, 211

Arithmatic Citeuita 143

ASM Block 362, 365, 368, 370, 371 , 372

ASM chart 362, 363, 364, 365, 366, 367, 368,
369, 370,371, 372, 373, 37~ , 375,376, 377,
379, 381

518

INDEX

As$ociative Law 67

A&ynehronoU3 266, 272, 273, 280, 282. 283, 288,
291 , 293,296, 298,307,328, 329, 331,332,
333,334,a35 , 336,a89, 8~1 , 345, 346,347,
349, 351, 353, 35~, 356, 360, 361

Asynchronoull Counter 272, 273, 280, 288, 291,
293, 307, 329

Asynehronou.s Counter Ci rcuitll 272

Asynehronou.s Sequential Circuitll 214, 272

Axiomatic Sylltem.t 66

8
BCD 15. 16, 37, 38, 39, 4 1, 42. 43. 272, 287.307.

329

BCD Adder 17~. 175, 176

BCD Addition 38, 39

BCD codes 41 , 42. 43

BCD Subtraction 39

Biasing 386, 392, 393, 421 , 424, 432

Bi-dirt!ct.ional 268, 271

Binary 12, 13, 14, Hi , 17, 19, 20, 21 , 22, 23, 24.
25, 26,27, 28, 29,30, 31, 32, 33. 34, 37, 38,
.0, 41, 42, 43, 45, 47, 50,52, 53, 1M, 56, 57,
58, 6 1, 62

Binary Addition 25

Binary Arithmetic 24

Binary Division 26

Binary Coded Decimal 15, 37, 42

Binary Logic 8, 9. 63, 67

Binary Multiplieation 26

Binary Signals 5 , 9, 10

Binary Subtnlrtion 25

Binary auhtraetora 146

Binary to iTay code converter 149, 150

Binary to Gray conYenion 45

Binary to Octal ConvM'Slon 19

Bipolar Junction Tranaietor 891, 892

Bipolar logic: families 408, 488
Bistable 214, 215

Bietable Muhivibrator 215

Bit 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 26, 27,28. 31, 82, 33, 34, 37, 38, 40, 41 ,
42,43,44,45,46,47,48,49,50,51, 52,63,
56. 57,62

BJT Ctt.racteriltic: 395

Block codea 47, 48,52

Boolean Funetions 69, 71, 72, 75, 97, 105
Bound c:hu(eI 385

Breakdown YOltage 389
ButTer 82, 83, 92

Burst Error Detection 46, 47
Bus contention 444

Byt.ee 12, 15, 17, 16, 18

c
Charaeteriltie equation 224, 232,234,238,241 ,

243, 262

CheebulnI 46

Chip 382, 402, 440, 448

Circuita with hitches 335, 340

CireuiUl withwt Latchea 835

Clampi", (or Proteetive) Diodee 425

Clanical Method 185

Classification of Signals 4

Clock 214, 219,222,223,224,225,227,228,
229, 230, 231,232. 233, 234,235,238,237,
238,24 1, 243,246, 248,258,259,261, 262,
,6<

Cloc:k frequency 333, 334

cloclr. period 333

Cloclr. St.. 331

Cloclr. width 333

CLocked 0 Fnp-Flop 228. 229, 264

Clocked Sequential Circuit 214, 219, 241 , 246,
258, 333, 834

Jndu 519

CMOS 402,403, 440, 441 , 442, 443, 444, 446,
447,448, 449,451

CMOS Gata 440

CMOS Inverter 440, 441 . 443, 451

CMOS Seriel 443, 444

CMOS to TIL Interface 447

Codes 12,20, 21 , 4-0,41 , 42, 43, 44, 47,48,52,
53

CoIIKtor current 393, 394, 3~, 396, 398, 399,
417, 421 , 424, 425

Comhination Logic 10

Combinationa' circuit 141. 142, 143, 144 , 146,
147, 156, 161, 164,167, 169, 174. 177, 179,
180, lIU, 185, 186, 189, 194

Common baae current gain 394

Common emitter current gain 893

Commutative Le.w 67

Compatibility 403, 443, 444, 446

Compatible 31S1, 352, 353, 357, 358

Complementary MOS 402. 440

Complement.. Law 67

Complex PLDe (CPL1l8) 206

CompleJI. Programmable Logie Devices (CPLDII)
196

Conditional Output Bol: 363, 364

Coro.senllUl Lew 68

ContinuoUl .y.tems 2

Continuoul Time and Disc"'te Time Sirnale 4

Controlsuba}'lltem 362,371,372,376,377,378,
379, 380, 381

Cou,nter IC. 282

Countel'll 265, 272, 273, 274, 275, 278, 280, 282,
284,287,288,295,299,807,309,311,316,
322, 323, 824, 325, 328, 829

CPLDs 196, 2()6, 207, 210

Critical race 34t5, 346, 347, 349, 353, 354, 359,
361

Current houin, 415,450

Current BioI Iocic: 421

Current IIOW'CII lotic: 414

Cut of!' ",gion 395, 396

Cut-in volta,e 888, 391, 3915

520 Switching Theory

Cycle 333, 345, 346, 360, 361

Cyclic Codes 52, 53

D

Data bus 265

Data register 265
De Morgan 's Law 67

!Rcade Counter 291,292,293,298, 299,307,
309, 310, 312, 321, 329

Ikcimal 12,13, 14, 15, 16, 19, 20, 21, 22, 23, 24,
25, 26,34 , 35.37,38,39.40, 41 , 42.43,44,
52. 61 , 62

Decisi':>n box 363, 364. 365. 368, 370, 271. 376
Decoder 159, 160, 161, 164. 165, 167, 195

Decoders (Demultiplexers} 159

Delay time 398

Ik Morgan's Law 67

Demultiplexer 159. 160, 161, 164, 193, 195

Demultiplexing 160

DEMUX 160, 161, 195

Depletion region 385, 386, 387. 393, 400, 449
Design Procedure 141, 142, 149, 156, 161

Difference Amplifier 431, 432, 433, 434. 450

Diffusion current 384. 449

Digital Circuit 382, 403, 409. 448, 451

Digital Hardware Algorithm 363

Digital Logic Family- 403

Digital Multiplexer 156

Digital or Discrete Signal 2, 3

Digital S)'lItems 4, 7

Diode and Gate 407, 409, 415

Diode Logic 407

Diode or Gate 409

Diode Transistor Logic 415
Direct Coupled Transistor Logic (DCTL) 415

Distributive Law 66. 67, 76

Divide-by-6-Circuit 315

Divide-by-9 Circuit 315

Don't care Map Entries 124

Doped .semiconductor 383, 384

Drift current 384, 449

Duality 67, 68,69, 78,111

Duty cycle 333

Dynamic Hazard 181, 184

Dynamic Power Dissipation 442,443, 451

E
ECL ORINOR Gate 433, 434

Edges 363, 365

Electrically Programmable ROMs 197

Eliminating a static-O hazard 184

Eliminating a static-l hazard 182

Emitter Coupled Logic (ECL) 431

Emitter followers 433, 434, 437

EncO<:!ers 167

Enhancement Type 399, 400, 401, 402

Equivalent Faulta 188

Erasable ROMs 197

Error Correcting Codes 47

Error Detecting Codes 45, 47

Essential Hazard 184

Exca.ss 3 Code 42
Exclusive NOR gate 91

EXCLUSIVE OR gate 84, 88

Extrinsic Semiconductor 383, 448

F
Fall Time 399

Fan Out 405,411,413, 420,421,424,425,426,
427, 431, 437, 449, 450

FAST ADDER 172

Fault detection 185, 187, 188, 189

Fault detection problem 185

fault-location problem 185

Field Programmable Gate Arrays (FPGAs) 196,
207

Field Programmable ROMs 197

Field-Programmable Logic 199
Field-Programmable Logic Array (FPLA) 199

Figure of merit 404, 405, 426, 427, 449, 450

Finite state machine 362
Five Variable K-Map 125

Flip-Flop 214,215, 216,217, 218,219,220,221,
222,223,224,225,226, 227,228,229,230,
231,232,233,234,236,237,238,239,241,
243,244,247,248,249,251,257,259,261,
262, 264

Flow table 339, 340, 342, 343, 346, 348, 349,
350,351, 352,353, 354,355,356,357,358,
359, 361

Forward billJJing 386, 393, 432

Four Variable K-Map 120, 121

Full Adder 144, 145, 146, 163, 164, 169, 170,
171, 172, 174, 192, 193

Full subtraetor 147, 148,149

FundamentaJ mode asynchronous sequential
circuit 334, 336

G

Gate Definition 78
Generic Array Logic (GAL) 204

Glitches (spikes) 179, 180, 185

Gray code 43, 44, 45

Gray to Binary conversion 45

H

Half Subtractor 146. 147, 148, 149

Half-adder 143

Hamming Code 49, 50, 51, 53

Hamming distance 48

Hardware Algorithm 362, 363

Hazard 179, 180, 181, 182, 183, 184, 185, 194

Hexadecimal 12, 15, 16,20,21,22,35,57,58,
62

High Threshold Logic (HTL) 422

History sensitive cireuits 11

Huntington Poatulates 65, 66, 67

110 blocks 207

IC 74193 283, 284, 286, 329

IC 7490JIc 307,308,309,310,311,312, 313,329

IC 7492A 313

Integrated Cireuit 1, 10

Integrated Circuit or IC 382

lnteroonnect 207,209, 211

Intersection Law 67

Intrinsic semiconductor 383, 384

Index 521

Inverter 65, 66,67,71,82,83, 84,85.86,92.94.
98, 99, 100. 104, 105

Involution Law 67

Ionization process 384

J
JK flip-Hops 232, 234

Johnson Counter 318, 319, 321, 322

K
Karnaugh 113,123,125,137,138, 139
Karnaugh MAP (K-Map) 113

Knee voltage 389

L
Latch 215, 216, 217,218,219,220,221,222,

223, 228, 234, 261, 262, 264

Leakage current 387, 389, 441

Level translators 433, 436

Loading of DTL Gate 418, 419

Loating Inputs 425

Logic 63, 64,65,67,68,71,72, 77, 78,79, SO,
82, 83,84,85,86,88,90,91,92,94,95, 96.
97, 98, 100, 102, 103, 104, lOS, 106, 107,
108, 109, 110, 111

Logic blocks 207, 208
Logic gates 8, 10, 77, 92, 94, 95, 96
Logical adjancy 68
Look-ahead Carry Generator 171,172, 173
Lookup tables (LUT) 208
LSI 10, 224
LSI Cireuite 155

M
Magnitude Comparator 177, 178, 179

M-ary signal 5

Maak programmed ROMs 197

Memoryelements 213, 214, 251

Merger diagram 349, 352, 357, 358

Metastability 332

522 Swikhing Theory

Minimum distance 48

Mintenn and Maxterm 73

Mod-3 Counter 288, 289, 290, 295, 296

Mod-5 counter 289,290, 296, 297,301. 302, 303,
307, 311, 329, 368

MODES OF OPERATION 334

Modulo 272, 286, 289, 295, 307, 311, 312 328

Modulo counter 286, 307, 328

Modulus counter 296, 287, 295

MOS 382, 388, 389, 392, 393, 398, 399, 400,
401, 402, 403, 407, 422, 430, 438, 439, 440,
441,442,443,444,446,447,448,449,450,
451

MOS Logic 438, 450

MSl 10, 224

MSI Circuits 148

MSI Counter 307, 313

Multi Output Minimization 129

MUX 156, 157, 158, 159, 160, 161, 162, 163,
165, 166, 195

N
Nand and NOR Implementation 97

NAND Gate 84, 85, 86, 90, 92, 95, 97, 98, 99,
104, 105, 106, 108, 109

NAND Gate Latch 218, 219

Next Statf> 213, 221, 222, 224, 228, 234, 238,
241, 243, 244, 245, 248, 249, 250, 251, 253,
254, 255, 256, 257, 258, 259, 261

Nibble 12,15, 16, 17, 18, 37, 38, 39

NMOS 399, 400, 402, 403, 438, 439, 440, 441,
442, 449, 451

NMOS al Load 438

NMOS Gates 438

Noise immunity 406, 440, 442

Noise Margin 406,407,411,413, 414,415,418,
420, 422, 426, 427, 436, 441, 449

NON Saturated LOGIC FAMILY 430, 431, 433

Non Weighted Codes 43

Noncritical race 345

NOR gate 84, 86, 87, 88, 90, 91, 92, 93, 95, 96,
97, 99, 100, 104, 105, 108, 109

NOR LATCH 216, 218

o
Octal Number 18, 22, 58, 62

0ctaJ to Binary 19
ON time 391, 398, 399 449

Open collector output 425, 445, 449

Open emitter output 434. 449

OR Gate 71, 80, 81, 82, 84, 86, 87, 88, 89, 90,
91,92,93,94,95,96,97,98.99, 100, 104,
105, 106, 108, 109

Output characteristie of traruJistor 395

p

ParaUelAdder 169, 170,171.172,173,174,176

Parallel AdderlSubtraetor 173, 174

Parity bit 46, 48, 62

Parity Generators and Checkers 146

P8.lI8ive Pullup 414. 420. 423, 424, 425, 449,
450

Path Sensitizing 185, 189, 192

Permanent faults 185

PMOS 402, 403, 441, 442, 449

PN-junction 385

Positive and Negative Logic 77

Postulates 65, 66, 67

Power Dissipation 402, 403, 404, 405, 406, 417,
418,421,424,426,427,428,430,431,436,
439,440,441,442,443,447,450,451

Present State 213,214,221,222,224,229,234,
238,241,243,244,245,248, 249,255,256,
257, 258, 259, 261

Preset 266,279, 280, 283, 285, 286, 287, 307,
316, 317. 324, 329

PreviOU8 state next state 228

Prime and Essential lmplicants 123

Primitive flow 340, 349, 351, 352, 353, 357. 358

Primitive flow table 340, 349, 351, 352, 357,
358

Priority Encoder 168
Product of Sums (POS) 72

Product Term 71,72,75

Product-of-maxterms 74
Programmable Array Logie (PAL) 202

Programmable logic devices (PL08) 196

Programmable Read·Only Memory (PROM) 199

Propagation delay 404, 405, 407, 414, 420, 422,
423,424,425,427,430,431,438,442,449,
450

Pull down resistor 424

Pullup Resistor 407,408, 420,424,446,447

Pullup transistor 428,442, 447, 450

Pulse mode asynchronous sequential circuit 334,
335

Q

Quine-McCluskey (Tabulsr) Method 130

R
r 's Complement 35, 36

Race 332,345,346,347,349,353,354, 359,361

Race around 230, 231, 233, 234, 235

Race-around condition 230

Read Only Memory (ROM) 196

Redundency 45

Redundant Bits 49, 52, 53

Reflective rode 44

Register 364,365,366,371,372,373,374,375

Reset 266, 268, 269, 273, 274, 277, 279, 280,
281,282,283,285,286,287, 288,289, 290,
291,292,293,294,295, 296,297, 298,300,
307,309,312,315,316,317,318,319, 320,
324, 329

Reset State 216, 217,218,221,225,229, 230
248

Resistor Transistor Logic (RTL) 410

Response time 391

Reverse biasing 386, 424

Reversible shift register 271

Ringcounter 271,316,317,318,319, 322,323,
330

Ripple counter 272, 273, 274, 275, 280, 293

Rise time 398

RS Flip-Flop 216, 228, 264

s
Saturation current 389, 393, 396, 421

Index 523

Saturation region 395, 396, 397, 399, 431

Seale Current 388

Schottky Diode 391 , 399, 449
Schottky Transistor 399, 430, 449

Schottky TTL 403, 430, 450

Self complementing 43

Self complementing codes 43

Sensitized 189, 190, 191

Sequence Detector 369

Sequence Detector 369, 370

Sequence generators 322, 323, 325, 327

Sequential Circuits 213, 214. 219, 238, 241.
246,247,265,271 , 272

Sequential Logic to. 11

Serial Adder 170

Serial and Parallel Adders 169

Set state 216, 217,218. 22 1. 225, 229, 230, 248

Shift Register 265, 266, 267, 268, 270. 27 1, 316,
320, 321, 323, 326. 329, 330

Signed Complement Representation 31

Signed Magnitude Representation 31
Simpla PLDs (SPLDs) 202

Six variable K-Map 127

Specifications of Standard TTL 425, 431

Speed power product 404

Spikes 179, 180, 185

SPLDs 202,204.206,207 , 209, 210

SSI I, 2, 4, 6. 8 , 9, 10

SR latch 219, 220, 223 , 228, 261

stable state 214,216, 217,222

Standard Fonns 75, 77

State 213,214,215,216,217.218,220,221,
222,223,224,225.227,228,229,230,231,
232,233,234, 235,238,239, 240, 241,242,
243,244,245,246,247, 248,249, 250,251 ,
253,254,255,256,257,258,259, 260,261 ,
262, 263, 264

State box 362, 363, 364, 365, 368, 370, 371

State Diagram 366, 369, 370, 381

State variubles 337, 346, 348, 354, 356

Static hazard 181, 182, 184, 194

Static Power Dissipation 44J

524 Switching Theory

Storage time 390, 391, 399, 430, 449

Subtractora 146, 148

Sum of mintenns 74, 75, 104, 111

Sum of Products (SOP) 72, 199

Sum 1erm 72, 75, 76

Switching Circuits 8, 9, 10

Switching time 391, 424

Synchronoua 265,266,271,272,273,280,281,
282,283,288,291,293,295,296,298,299,
300,301 , 303,307,328,329,330,331,332,
333,334,335,336,339,341,345,346,347,
349, 351, 353, 354, 356, 360, 361

Synchronoua counter 272, 273, 280, 282, 288,
291, 293, 299, 300, 301, 307, 329, 330

Synchronous 8equentiaJ Circuits 214

T
Tautology Law 67

1emporary faults 185

Three state buffer 445, 446

Three State Logie (TSL) 444

Threshold voltage 401, 441, 449

'lbggle Switch 214, 229,230, 231, 233

'Ibggling 6

'lbtem pole output 428

Transfer eharaeteristiCII 395, 441, 442, 451

TranaisWr as a Switch 397

Tranaistor TraMilltor Logie (TI'L) 423

Tranaition Table 338, 339, 340, 341, 342, 343,
345, 348, 349, 359, 360, 391, 449

Truth table 8, 9, 64, 66, 66, 74, 80, 83, 85, 86,
87, 92, 216, 217, 218, 219, 220, 221, 222,
224,227,228,229,232,233,238,247,253,
259,2M

TSL Inverter 424, 443, 445

TTL Series 430

TTL to CMOS Interface 446

Types of Hazards 181

u
Union Law 67

Unipolar logic families 403

Unipolar transistors 399

Unit Distance code 44

Universal gates 84, 90, 97

UUUBed Codes 42

Up-counter 272, 273, 275, 276, 277, 278, 282,
298, 328, 329

Up-Down CoWlters 278

V
VLSI 10

W
Wired Logie 421,425,430,437,450

Words 12,15,17,18,40.41,42,46,48,53,54

X
Xilimt 208

xs-a to BCD code convener 151, 153

	Preface
	Contents
	Chapter 0 Introduction to Digital Electronics
	Chapter 1 Numbering Systems
	1.0 Introduction
	1.1 Numbering Systems
	1.1.1 A Review of the Decimal System
	1.1.2 Binary Numbering System
	1.1.3 Binary Formats

	1.2 Data Organization
	1.2.1 Bits
	1.2.2 Nibbles
	1.2.3 Bytes
	1.2.4 Words
	1.2.5 Double Words

	1.3 Octal Numbering System
	1.3.1 Octal to Decimal, Decimal to Octal Conversion
	1.3.2 Octal to Binary, Binary to Octal Conversion

	1.4 Hexadecimal Numbering System
	1.4.1 Hex to Decimal and Decimal to Hex Conversion
	1.4.2 Hex to Binary and Binary to Hex Conversion
	1.4.3 Hex to Octal and Octal to Hex Conversion

	1.5 Range of Number Representation
	1.6 Binary Arithmetic
	1.7 Negative Numbers and Their Arithmetic
	1.7.1 1’s and 2’s Complement
	1.7.2 Subtraction Using 1’s and 2’s Complement
	1.7.3 Signed Binary Representation
	1.7.4 Arithmetic Overflow
	1.7.5 9’s and 10’s Complement
	1.7.6 r’s Complement and (r – 1)’s Complement
	1.7.7 Rules for Subtraction Using r’s and (r–1)’s Complement

	1.8 Binary Coded Decimal (BCD) and Its Arithmetic
	1.9 Codes
	1.9.1 Weighted Binary Codes
	1.9.2 Non Weighted Codes
	1.9.3 Error Detecting Codes
	1.9.4 Error Correcting Codes
	1.9.5 Hamming Code
	1.9.6 Cyclic Codes

	1.10 Solved Examples
	1.11 Exercises

	Chapter 2 Digital Design Fundamentals-Boolean Algebra and Logic Gates
	2.0 Introductory Concepts of Digital Design
	2.1 Truth Table
	2.2 Axiomatic Systems and Boolean Algebra
	2.2.1 Huntington’s Postulates
	2.2.2 Basic Theorems and Properties of Boolean Algebra

	2.3 Boolean Functions
	2.3.1 Transformation of Boolean Function into Logic Diagram
	2.3.2 Complement of a Function

	2.4 Representation of Boolean Functions
	2.4.1 Minterm and Maxterm Realization
	2.4.2 Standard Forms
	2.4.3 Conversion between Standard Forms

	2.5 Digital Logic Gates
	2.5.1 Positive and Negative Logic Designation
	2.5.2 Gate Definition
	2.5.3 The AND Gate
	2.5.4 The OR Gate
	2.5.5 The Inverter and Buffer
	2.5.6 Other Gates and Their Functions
	2.5.7 Universal Gates
	2.5.8 The Exclusive OR Gate
	2.5.9 The Exclusive NOR gate
	2.5.10 Extension to Multiple Inputs in Logic Gates

	2.6 NAND and NOR Implementation
	2.6.1 Implementation of a Multistage (or Multilevel) Digital Circuit using NAND Gates Only
	2.6.2 Implementation of a Multilevel digital circuit using NOR gates only

	2.7 Exercises

	Chapter 3 Boolean Function Minimization Techniques
	3.0 Introduction
	3.1 Minimization Using Postulates and Theorem of Boolean Algebra
	3.2 Minimization Using Karnaugh Map (K-Map) Method
	3.2.1 Two and Three Variable K Map
	3.2.2 Boolean Expression Minimization Using K-Map
	3.2.3 Minimization in Products of Sums Form
	3.2.4 Four Variable K-Map
	3.2.5 Prime and Essential Implicants
	3.2.6 Don’t care Map Entries
	3.2.7 Five Variable K-Map
	3.2.8 Six variable K-Map
	3.2.9 Multi Output Minimization

	3.3 Minimization Using Quine-McCluskey (Tabular) Method
	3.4 Exercises

	Chapter 4 Combinational Logic
	4.0 Introduction
	4.1 Arithmatic Circuits
	4.1.1 Adders
	4.1.2 Subtractors
	4.1.3 Code Converters
	4.1.4 Parity Generators and Checkers

	4.2 MSI And LSI Circuits
	4.2.1 The Digital Multiplexer
	4.2.2 Decoders (Demultiplexers)
	4.2.3 Encoders
	4.2.4 Serial and Parallel Adders
	4.2.5 Decimal Adder
	4.2.6. Magnitude Comparator

	4.3 Hazards
	4.3.1 Hazards in Combinational Circuits
	4.3.2 Types of Hazards
	4.3.3 Hazard Free Realizations
	4.3.4 Essential Hazard
	4.3.5 Significance of Hazards

	4.4 Fault Detection and Location
	4.4.1 Classical Method
	4.4.2 The Fault Table Method
	4.4.3 Fault detection by Path Sensitizing

	4.5 Exercises

	Chapter 5 Programmable Logic Devices
	5.0 Introduction
	5.1 Read only Memory (ROM)
	5.1.1 Realizing Logical Functions with ROM

	5.2 Programmable Logic Arrays
	5.2.1 Realizing Logical Functions with PLAs

	5.3 Programmable Array Logic (PAL)
	5.3.1 Commercially Available SPLDs
	5.3.2 Generic Array Logic (GAL)
	5.3.3 Applications of PLDs

	5.4 Complex Programmable Logic Devices (CPLD)
	5.4.1 Applications of CPLDs

	5.5 Field-Programmable Gate Arrays (FPGA)
	5.5.1 Applications of FPGAs

	5.6 User-Programmable Switch Technologies
	5.7 Exercises

	Chapter 6 Synchronous (Clocked) Sequential Circuits
	6.0 Introduction
	6.1 Flip-Flops
	6.1.1 RS Flip-Flop
	6.1.2 D Flip-Flop
	6.1.3 Clocked Flip-Flops
	6.1.4 Triggering of Flip Flops
	6.1.5 JK and T Flip-Flops
	6.1.6 Race Around Condition and Solution
	6.1.7 Operating Characteristics of Flip-flops
	6.1.8 Flip-Flop Applications

	6.2 Flip Flop Excitation Table
	6.3 Flip-Flop Conversions
	6.4 Analysis of Clocked Sequential Circuits
	6.5 Design of Clocked Sequential Circuits
	6.6 Finite State Machine (FSM)
	6.7 Solved Examples
	6.8 Exercises

	Chapter 7 Shift Registers and Counters
	7.0 Introduction
	7.1 Shift Registers
	7.2 Modes of Operation
	7.2.1 Serial In–Serial Out Shift Registers
	7.2.2 Serial In-Parallel Out Shift Registers
	7.2.3 Parallel In-Serial Out Shift Registers
	7.2.4 Parallel In-Parallel Out Shift Registers
	7.2.5 Bidirectional Shift Registers(Universal Shift Register)

	7.3 Applications of Shift Registers
	7.3.1 To Produce Time Delay
	7.3.2 To Simplify Combinational Logic
	7.3.3 To Convert Serial Data to Parallel Data

	7.4 Counters
	7.4.1 Introduction
	7.4.2 Binary Ripple Up-Counter
	7.4.3 4-Bit Binary Ripple Up-Counter
	7.4.4 3-Bit Binary Ripple Down Counter
	7.4.5 Up-Down Counters
	7.4.6 Reset and Preset Functions
	7.4.7 Universal Synchronous Counter Stage
	7.4.8 Synchronous Counter ICs
	7.4.9 Modulus Counters
	7.4.10 Counter Reset Method (Asynchronous Counters)
	7.4.11 Logic Gating Method
	7.4.12 Design of Synchronous Counters
	7.4.13 Lockout
	7.4.14 MSI Counter IC 7490 A
	7.4.15 MSI Counter IC 7492A
	7.4.16 Ring Counter
	7.4.17 Johnson Counter
	7.4.18 Ring Counter Applications

	7.5 Exercises

	Chapter 8 Asynchronous Sequential Logic
	8.0 Introduction
	8.1 Difference Between Synchronous and Asynchronous
	8.2 Modes of Operation
	8.3 Analysis of Asynchronous Sequential Machines
	8.3.1 Fundamental Mode Circuits
	8.3.2 Circuits without Latches
	8.3.3 Transition Table
	8.3.4 Flow table
	8.3.5 Circuits with Latches
	8.3.6 Races and Cycles
	8.3.7 Pulse-mode Circuits

	8.4 Asynchronous Sequential Circuit Design
	8.4.1 Design Steps
	8.4.2 Reduction of States
	8.4.3 Merger Diagram

	8.5 Essential Hazards
	8.6 Hazard-Free Realization Using S-R Flip-Flops
	8.7 Solved Examples
	8.8 Exercises

	Chapter 9 Algorithmic State Machine
	9.0 Introduction
	9.1 Design of Digital System
	9.2 The Elements and Structure of the ASM Chart
	9.2.1 ASM Block
	9.2.2 Register Operation
	9.2.3 ASM Charts
	9.2.4 MOD-5 Counter
	9.2.5 Sequence Detector

	9.3 Timing Considerations
	9.4 Data Processing Unit
	9.5 Control Design
	9.5.1 Multiplexer Control
	9.5.2 PLA Control

	9.6 Exercises

	Chapter 10 Switching Elements and Implementation of Logic Gates
	10.0 Introduction
	10.1 Fundamentals of Semiconductors and Semiconductor Switching devices
	10.1.1 Semiconductors
	10.1.2 Semiconductor Diode or PN Junction
	10.1.3 Bipolar Junction Transistor (BJTs)

	10.2 Characteristics of Logic Families
	10.2.1 Classification of Logic Families
	10.2.2 Characteristics of Digital ICs and families

	10.3 Implementation of Logic Families
	10.3.1 Basic Diode Logic
	10.3.2 Resistor Transistor Logic (RTL)
	10.3.3 Direct Coupled Transistor Logic (DCTL)
	10.3.4 Diode Transistor Logic (DTL)
	10.3.5 High Threshold Logic (HTL)
	10.3.6 Transistor Transistor Logic (TTL)
	10.3.7 Emitter Coupled Logic (ECL)
	10.3.8 MOS Logic
	10.3.9 Three State Logic (TSL)

	10.4 Interfacing of Logic Gates
	10.4.1 TTL to CMOS Interface
	10.4.2 CMOS to TTL Interface

	10.5 Comparison of Logic Families
	10.6 Exercises

	Chapter 11 Memory Fundamentals
	11.0 Introduction
	11.1 Memory Basics
	11.2 Memory Characteristics
	11.3 Mass Storage Devices
	11.3.1 Magnetic Memory
	11.3.2 Optical Memory

	11.4 Semiconductor Memory
	11.4.1 Basic Memory Unit
	11.4.2 Basic Memory Organization
	11.4.3 Cell Organization (Memory Addressing)
	11.4.3.1 Matrix Addressing
	11.4.3.2 The Address Decoding

	11.4.4 Organizing Word Lengths (Different Memory Organization)
	11.4.5 Classification of Semiconductor Memory
	11.4.6 Semiconductor Memory Timing
	11.4.6.1 Memory Write Operation
	11.4.6.2 Memory Read Operation

	11.4.7 Read Only Memory
	11.4.7.1 Some Simple ROM Organizations
	11.4.7.2 Mask Programmed ROMs

	11.4.8 Programmable Read Only Memory (PROM)
	11.4.8.1 Bi-Polar PROMs
	11.4.8.2 MOS PROMs
	11.4.8.3 PROM Programming

	11.4.9 Erasable Programmable ROM (EPROM)
	11.4.9.1 EPROM Programming
	11.4.9.2 The 27XXX EPROM Series

	11.4.10 Electrically Erasable Programmable ROM (EEPROM)
	11.4.11 The Random Access Memory (RAM)
	11.4.12 Static Random Access Memory (SRAM)
	11.4.12.1 The Bi-Polar SRAM Cell
	11.4.12.2 The MOS SRAM Cell
	11.4.12.3 SRAM ICs

	11.4.13 Dynamic Random Access Memory (DRAM)
	11.4.13.1 Basic DRAM Cell
	11.4.13.2 One MOS Transistor DRAM Cell
	11.4.13.3 DRAM Organization
	11.4.13.4 The DRAM Structure

	11.4.14 SRAMs and DRAMs
	11.4.15 Memory System Design
	11.4.15.1 Determining Address Lines & Address Range
	11.4.15.2 Parallel and Series Connections of Memory
	11.4.15.3 Address Space Allocation—The Address Decoding
	11.4.15.4 Formation of Memory System

	11.5 Excercises

	Appendices
	A- Integrated Circuits Fabrication Fundamentals
	B-Digital ICs

	References
	Index

